EXPERIMENTAL TECHNIQUES

Fabricating a Low-Cost, Microscopy-Compatible Mechanical Testing Device
Mehta SM, De Santos DR, Sridhar S, Aguayo VC, Meraz CA, Mikos M and Grande-Allen KJ
Most commercially-available mechanical testing devices are bulky, expensive, and unable to evaluate changes in sample microstructure under load. This leaves a crucial gap in understanding between material structure and bulk mechanical properties. Our objective was to fabricate a mechanical testing device small enough to fit in most upright or inverted microscopy stages and able to position samples to allow for simultaneous mechanical and microstructural characterization. Parts were 3D printed using the hobbyist-friendly Fused Filament Fabrication technique, then assembled with commercial fasteners and translation components to create a mechanical testing device that utilized the deflection of plastic posts to determine sample reaction forces under applied strain. Video of sample deformation was analyzed using a custom processing script to calculate stress and strain behavior in an automated and high-throughput manner. This device was able to perform mechanical characterization with an accuracy comparable to commercial mechanical testing devices for a wide range of nonlinear and viscoelastic samples under dry and hydrated conditions. Additionally, the device showed compatibility with different upright and inverted microscopes and was able to demonstrate accurate mechanical testing results when used with these instruments. We successfully developed a device capable of accurately testing a majority of soft materials in the field of Biomedical Engineering with the ability to perform additional microstructural characterization using microscopy at a price point of $600.
Response of an Impact Test Apparatus for Fall Protective Headgear Testing Using a Hybrid-III Head/Neck Assembly
Caccese V, Ferguson J, Lloyd J, Edgecomb M, Seidi M and Hajiaghamemar M
A test method based upon a Hybrid-III head and neck assembly that includes measurement of both linear and angular acceleration is investigated for potential use in impact testing of protective headgear. The test apparatus is based upon a twin wire drop test system modified with the head/neck assembly and associated flyarm components. This study represents a preliminary assessment of the test apparatus for use in the development of protective headgear designed to prevent injury due to falls. By including angular acceleration in the test protocol it becomes possible to assess and intentionally reduce this component of acceleration. Comparisons of standard and reduced durometer necks, various anvils, front, rear, and side drop orientations, and response data on performance of the apparatus are provided. Injury measures summarized for an unprotected drop include maximum linear and angular acceleration, head injury criteria (HIC), rotational injury criteria (RIC), and power rotational head injury criteria (PRHIC). Coefficient of variation for multiple drops ranged from 0.4 to 6.7% for linear acceleration. Angular acceleration recorded in a side drop orientation resulted in highest coefficient of variation of 16.3%. The drop test apparatus results in a reasonably repeatable test method that has potential to be used in studies of headgear designed to reduce head impact injury.
Optimization of Cutting Parameters in Turning of Titanium Alloy (Grade 5) by Analysing Surface Roughness, Tool Wear and Energy Consumption
Akkuş H and Yaka H
In this study, Ti 6Al-4 V (grade 5) ELI alloy was machined with minimum energy and optimum surface quality and minimum tool wear. The appropriate cutting tool and suitable cutting parameters have been selected. As a result of the turning process, average surface roughness (Ra), tool wear and energy consumption were measured. The results have been analyzed by normality test, linear regression model, Taguchi analysis, ANOVA, Pareto graphics and multiple optimization method. It has been observed that high tool wear value increases Ra and energy consumption. In multiple optimization, it was concluded that it made predictions with 89,1% accuracy for Ra, 58,33% for tool wear, 96,75% for energy consumption. While the feed rate was the effective parameter for Ra and energy consumption, the effective parameter in tool wear was the cutting speed. Our study has revealed that by controlling energy consumption, surface quality can be maintained and tool wear can be controlled.
Low-cost Solutions for Velocimetry in Rotating and Opaque Fluid Experiments using Ultrasonic Time of Flight
Burmann F, Noir J, Beetschen S and Jackson A
Many common techniques for flow measurement, such as Particle Image Velocimetry (PIV) or Ultrasonic Doppler Velocimetry (UDV), rely on the presence of reflectors in the fluid. These methods fail to operate when e.g centrifugal or gravitational acceleration leads to a rarefaction of scatterers in the fluid, as for instance in rapidly rotating experiments. In this article we present two low-cost implementations for flow measurement based on the transit time (or Time of Flight) of acoustic waves, that do not require the presence of scatterers in the fluid. We compare our two implementations against UDV in a well controlled experiment with a simple oscillating flow and show we can achieve measurements in the sub-centimeter per second velocity range with an accuracy of . We also perform measurements in a rotating experiment with a complex flow structure from which we extract the mean zonal flow, which is in good agreement with theoretical predictions.