Magnetic Field Above Stratified Earth in Magnetic Loop Through-the-Earth Wireless Communications
Evaluation of the very-low frequency, ultralow frequency, or extremely low frequency magnetic field (H-field) due to a buried or on-surface magnetic dipole or antenna is important for applications such as geophysical exploration and through-the-Earth (TTE) wireless communications. In this study, we develop an explicit form of magnetic field over multi-layer Earth medium ( > 3). The generalized solution is derived for operating frequency, mine depth, and Earth conductivity that would be typically related to TTE applications.
Impact of Common Reflecting and Absorbing Building Materials on THz Multipath Channels
THz band communication has the potential to meet the high data rate demands of many current and future applications. However, before these networks are realized, extensive channel measurements are needed in order to characterize the wireless channel at these frequencies, in order to inform system design and deployment. In the current paper, we present a set of double-directional channel measurements that are conducted in several relevant indoor and outdoor scenarios. Our aim is to see the effect of common building materials that might be particularly reflective or absorptive (such as energy-saving glass, window blinds, or metallic reflectors), and how their presence changes the channel characteristics. Among other effects we find that - depending on the considered dynamic range - presence/absence of these materials can increase the required equalizer length by an order of magnitude.
Mathematical modeling and measurement of electric fields of electrode-based through-the-earth (TTE) communication
There are two types of through-the-earth (TTE) wireless communication in the mining industry: magnetic loop TTE and electrode-based (or linear) TTE. While the magnetic loop systems send signal through magnetic fields, the transmitter of an electrode-based TTE system sends signal directly through the mine overburden by driving an extremely low frequency (ELF) or ultralow frequency (ULF) AC current into the earth. The receiver at the other end (underground or surface) detects the resultant current and receives it as a voltage. A wireless communication link between surface and underground is then established. For electrode-based TTE communications, the signal is transmitted through the established electric field and is received as a voltage detected at the receiver. It is important to understand the electric field distribution within the mine overburden for the purpose of designing and improving the performance of the electrode-based TTE systems. In this paper, a complete explicit solution for all three electric field components for the electrode-based TTE communication was developed. An experiment was conducted using a prototype electrode-based TTE system developed by National Institute for Occupational Safety and Health. The mathematical model was then compared and validated with test data. A reasonable agreement was found between them.
A review of radio channel models for body centric communications
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications.
