SOFT MATERIALS

LONG-TERM MONITORING OF THE PHYSICOCHEMICAL PROPERTIES OF SILICA-BASED NANOPARTICLES ON THE RATE OF ENDOCYTOSIS AND EXOCYTOSIS AND CONSEQUENCES OF CELL DIVISION
Ha SW, Camalier CE, Weitzmann MN, Beck GR and Lee JK
Nanomaterials are diverse in size, shape and charge and these differences likely alter their physicochemical properties in biological systems. We have investigated how these properties alter the initial and long-term dynamics of endocytosis, cell viability, cell division, exocytosis, and interaction with a collagen extracellular matrix using silica-based fluorescent nanoparticles and the murine pre-osteoblast cell line, MC3T3-E1. Three surface modified nanoparticles were analyzed: positively charged (PTMA), negatively charged (OH), and neutrally charged polyethylene glycol (PEG). Positively charged PTMA-modified nanoparticles demonstrated the most rapid uptake, within 2 hours, while PEG modified and negatively charged OH nanoparticles demonstrated slower uptake. Cell viability was >80% irrespective of nanoparticle surface charge suggesting a general lack of toxicity. Long-term monitoring of fluorescent intensity revealed that nanoparticles were passed to daughter cells during mitotic cell division with a corresponding decrease in fluorescent intensity. These data suggest that irrespective of surface charge silica nanoparticles have the potential to internalize into osteoblasts, albeit with different kinetics. Furthermore, long lived nanoparticles have the potential to be transferred to daughter cells during mitosis and can be maintained for weeks intracellularly or within a collagen matrix without toxicity and limited exocytosis.
Formation of planar hybrid lipid/polymer membranes anchored to an S-layer protein lattice by vesicle binding and rupture
Czernohlavek C and Schuster B
Exploitation of biomolecular and biomimetic components on solid surfaces gain increasing importance for the design of stable functional platforms. The present study performed by quartz crystal microbalance with dissipation monitoring (QCM-D) reports on the formation of planar hybrid lipid/polymer membranes anchored to a crystalline surface (S-) layer protein lattice. In this approach, hybrid lipid/polymer vesicles were chemically bound to the S-layer protein lattice. Subsequently, to form a hybrid planar layer rupture and fusion was triggered either by (1) β- diketone - europium ion complex formation or (2) successive application of calcium ions, lowering the pH from 9 to 4, and the detergent CHAPS. As determined by QCM-D, method 1 resulted for a polymer content of 5% in a planar membrane with some imbedded intact vesicles, whereas method 2 succeeded in planar hybrid membranes with a polymer content of even up to 70%. These results provide evidence for the effective formation of planar lipid/polymer membranes varying in their composition on an S-layer protein lattice.
Design and Validation of a Vacuum Assisted Anchorage for the Uniaxial Tensile Testing of Soft Materials
Blose KJ, Pichamuthu JE, Weinbaum JS and Vorp DA
Current commercial tensile testing systems use spring-loaded or other compression-based grips to clamp materials in place posing a problem for very soft or delicate materials that cannot withstand this mechanical clamping force. In order to perform uniaxial tensile tests on soft tissues or materials, we have created a novel vacuum-assisted anchor (VAA). Fibrin gels were subjected to uniaxial extension, and the testing data was used to determine material mechanical properties. Utilizing the VAA, we achieved successful tensile breaks of soft fibrin gels while finding statistically significant differences between the mechanical properties of gels fabricated at two different fibrinogen concentrations.
Increasing Silicone Mold Longevity: A Review of Surface Modification Techniques for PDMS-PDMS Double Casting
Ansari A, Trehan R, Watson C and Senyo S
Polydimethyl siloxane (PDMS) has been used extensively for microfluidic devices due to its chemical properties allowing for rapid molding and versatile biological application. Soft lithography based PDMS fabrication primarily comprises casting from patterned photoresist on a silicon wafer. The patterned photoresist is often replaced with the cast PDMS as a more durable template mold for final PDMS fabrication that is less fragile and expensive. PDMS-PDMS double casting prolongs the longevity of soft lithography molds and reduces overall costs to microfuidic applications. A common end to the lifetime of PDMS negative masters is the risk of bonding between the replicate and mold and distorted topographrical features. This review examines common chemical and physical debonding approaches between PDMS-PDMS castings to exend the lifetime of PDMS masters.