Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI
In resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize temporal changes in the brain's intrinsic functional connectivity. A widely used approach for DFC estimation is the computation of the sliding window correlation between blood oxygenation level dependent (BOLD) signals from different brain regions. Although the source of temporal fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may reflect dynamic shifts between functional brain networks. At the same time, recent findings suggest that DFC estimates might be prone to the influence of nuisance factors such as the physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many DFC studies to regress out the effects of nuisance terms prior to the computation of DFC estimates. In this work we examined the relationship between seed-specific sliding window correlation-based DFC estimates and nuisance factors. We found that DFC estimates were significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance regressors. Strong correlations between the DFC estimates and nuisance regressor norms were found even when the underlying correlations between the nuisance and fMRI time courses were relatively small. We then show that nuisance regression does not necessarily eliminate the relationship between DFC estimates and nuisance norms, with significant correlations observed between the DFC estimates and nuisance norms even after nuisance regression. We present theoretical bounds on the difference between DFC estimates obtained before and after nuisance regression and relate these bounds to limitations in the efficacy of nuisance regression with regards to DFC estimates.
Feature selection of ultrahigh-dimensional covariates with survival outcomes: a selective review
Many modern biomedical studies have yielded survival data with high-throughput predictors. The goals of scientific research often lie in identifying predictive biomarkers, understanding biological mechanisms and making accurate and precise predictions. Variable screening is a crucial first step in achieving these goals. This work conducts a selective review of feature screening procedures for survival data with ultrahigh dimensional covariates. We present the main methodologies, along with the key conditions that ensure sure screening properties. The practical utility of these methods is examined via extensive simulations. We conclude the review with some future opportunities in this field.
Review of the available literature on the pharynx and pharyngeal surgery for 1954
[Clinical and anatomopathological study of two children with Cooley's anemia who died as a result of transfusion reactions]
Preliminary prediction of the control reproduction number of COVID-19 in Shaanxi Province, China
Firstly, according to the characteristics of COVID-19 epidemic and the control measures of the government of Shaanxi Province, a general population epidemic model is established. Then, the control reproduction number of general population epidemic model is obtained. Based on the epidemic model of general population, the epidemic model of general population and college population is further established, and the control reproduction number is also obtained.
The CUSUM statistic of change point under NA sequences
In this paper, we investigate the CUSUM statistic of change point under the negatively associated (NA) sequences. By establishing the consistency estimators for mean and covariance functions respectively, the limit distribution of the CUSUM statistic is proved to be a standard Brownian bridge, which extends the results obtained under the case of an independent normal sample and the moving average processes. Finally, the finite sample properties of the CUSUM statistic are given to show the efficiency of the method by simulation studies and an application on a real data analysis.
