Ultrasensitive Alzheimer's disease biomarker detection with nanopillar photonic crystal biosensors
The recent development of drugs able to mitigate neurodegenerative diseases has created an urgent need for biomarker tests that can be readily used by practitioners. Although biomarker detection directly in patients' blood is now possible, low-cost point-of-care tests remain a challenge because relevant biomarkers, especially amyloid- ( ) peptides, are small, they occur at very low concentrations, and detecting a single marker is insufficient. Here, we demonstrate a photonic resonant sensor able to detect 0.2 pg/ml of and in 1% human blood serum, equivalent to 20 pg/ml in undiluted serum, which is the clinically required level. This high performance is achieved by combining gold nanoparticle amplification with a dielectric nanopillar photonic crystal structure in a dimer configuration, while also employing an immunoassay approach for high selectivity and specificity. The design combines high resonance Q-factor, amplitude, and sensitivity, ideally suited for sensing. We also show the detection of and peptides in the same channel, which is highly relevant for assessing disease progress and opens a route toward multiplexing. Together with the handheld operation we have demonstrated previously, these photonic innovations make a major contribution to the ability to detect and monitor the progression of neurodegenerative diseases such as Alzheimer's.
SCREEN: SCatteREr ENabled optical asymmetry
Optics that allow us to see clearly along one viewing direction while obscuring others' view of us are useful in numerous settings, including privacy-preserving window screens and one-way mirrors for psychological studies. Additionally, due to the rise of cameras that are able to see outside the visible spectrum, there is a need for optics that can also provide one-way visibility at these wavelengths. This is particularly challenging for thermal (i.e., infrared) imaging because most existing methods require precise control of scene illumination, which is difficult to achieve in the infrared. To address this challenge, we demonstrate broadband, passive one-way visibility by precisely tuning the position and optical parameters of a single optical scatterer. We show the benefits of our approach in both a simulated and an experimental testbed. With experimental data, we demonstrate a 5.22× and 5.23× improvement in the degree of asymmetry for midwave infrared (MWIR) and visible (VIS) wavelengths, respectively. Ultimately, our method introduces a robust, passive one-way visibility system at midwave infrared (MWIR), which can aid in numerous privacy preservation applications.
High-speed 4D fluorescence light field tomography of whole freely moving organisms
Volumetric fluorescence imaging techniques, such as confocal, multiphoton, light sheet, and light field microscopy, have become indispensable tools across a wide range of cellular, developmental, and neurobiological applications. However, it is difficult to scale such techniques to the large 3D fields of view (FOV), volume rates, and synchronicity requirements for high-resolution 4D imaging of freely behaving organisms. Here, we present reflective Fourier light field computed tomography (ReFLeCT), a high-speed volumetric fluorescence computational imaging technique. ReFLeCT synchronously captures entire tomograms of multiple unrestrained, unanesthetized model organisms across multi-millimeter 3D FOVs at 120 volumes per second. In particular, we applied ReFLeCT to reconstruct 4D videos of fluorescently labeled zebrafish and larvae, enabling us to study their heartbeat, fin and tail motion, gaze, jaw motion, and muscle contractions with nearly isotropic 3D resolution while they are freely moving. To our knowledge, as a novel approach for snapshot tomographic capture, ReFLeCT is a major advance toward bridging the gap between current volumetric fluorescence microscopy techniques and macroscopic behavioral imaging.
Enhanced biochemical sensing with high-Q transmission resonances in free-standing membrane metasurfaces
Optical metasurfaces provide novel solutions to label-free biochemical sensing by localizing light resonantly beyond the diffraction limit, thereby selectively enhancing light-matter interactions for improved analytical performance. However, high-Q resonances in metasurfaces are usually achieved in the reflection mode, which impedes metasurface integration into compact imaging systems. Here, we demonstrate a novel metasurface platform for advanced biochemical sensing based on the physics of the bound states in the continuum (BIC) and electromagnetically induced transparency (EIT) modes, which arise when two interfering resonances from a periodic pattern of tilted elliptic holes overlap both spectrally and spatially, creating a narrow transparency window in the mid-infrared spectrum. We experimentally measure these resonant peaks observed in transmission mode (Q~734 @ ~8.8 μ) in free-standing silicon membranes and confirm their tunability through geometric scaling. We also demonstrate the strong coupling of the BIC-EIT modes with a thinly coated PMMA film on the metasurface, characterized by a large Rabi splitting (32 cm) and biosensing of protein monolayers in transmission mode. Our new photonic platform can facilitate the integration of metasurface biochemical sensors into compact and monolithic optical systems while being compatible with scalable manufacturing, thereby clearing the way for on-site biochemical sensing in everyday applications.
Wide-field bond-selective fluorescence imaging: from single-molecule to cellular imaging beyond video rate
Wide-field (WF) imaging is pivotal for observing dynamic biological events. While WF chemical microscopy offers high molecular specificity, it lacks the sensitivity for single-molecule detection. In contrast, WF fluorescence microscopy provides live-cell dynamic mapping but fails to leverage the rich chemical information necessary for functional interpretations. To address these limitations, we introduce Wide-Field Bond-selective Fluorescence-detected Infrared-Excited (WF-BonFIRE) spectro-microscopy. This technique combines rationally optimized imaging speed and field-of-view (FOV) to achieve single-molecule sensitivity with bond-selective contrast. We demonstrate WF-BonFIRE's capabilities in imaging single molecules, cells, astrocytes, and live neurons, capturing single FOVs up to 50 μm × 50 μm, with further expansion via multi-FOV mosaicking. Additionally, we have implemented a new temporal-delay modulation scheme that allows real-time kilohertz WF-BonFIRE imaging with speeds up to 1500 Hz. We showcase the millisecond temporal resolution through monitoring the random motion of live Escherichia coli. Leveraging its ability to distinguish molecules through distinct narrow-band BonFIRE signals, we further demonstrate multicolor real-time tracking. WF-BonFIRE should significantly broaden the boundary for chemical imaging, enabling high-speed observations at unparalleled sensitivity levels.
Hybrid dark-field and attenuation contrast retrieval for laboratory-based X-ray tomography
X-ray dark-field imaging highlights sample structures through contrast generated by sub-resolution features within the inspected volume. Quantifying dark-field signals generally involves multiple exposures for phase retrieval, separating contributions from scattering, refraction, and attenuation. Here, we introduce an approach for non-interferometric X-ray dark-field imaging that presents a single-parameter representation of the sample. This fuses attenuation and dark-field signals, enabling the reconstruction of a unified three-dimensional volume. Notably, our method can obtain dark-field contrast from a single exposure and employs conventional back projection algorithms for reconstruction. Our approach is based on the assumption of a macroscopically homogeneous material, which we validate through experiments on phantoms and on biological tissue samples. The methodology is implemented on a laboratory-based, rotating anode X-ray tube system without the need for coherent radiation or a high-resolution detector. Utilizing this system with streamlined data acquisition enables expedited scanning while maximizing dose efficiency. These attributes are crucial in time- and dose-sensitive medical imaging applications and unlock the ability of dark-field contrast with high-throughput lab-based tomography. We believe that the proposed approach can be extended across X-ray dark-field imaging implementations beyond tomography, spanning fast radiography, directional dark-field imaging, and compatibility with pulsed X-ray sources.
Photonic and electrochemical biosensors for near-patient tests-a critical comparison
Research into diagnostic biosensors is a vibrant field that combines scientific challenge with translational opportunities; innovation in healthcare is of great societal interest and is an essential element of future healthcare provision. Photonic and electrochemical biosensors are the dominant modalities, both scientifically and commercially, yet the two scientific communities largely remain separated and siloed. It seems astute to better understand what the two fields can learn from one another so as to progress the key scientific, translational, and commercial challenges. Here, we provide an analysis of the fundamental operational characteristics of photonic and electrochemical biosensors using a classification based on energy transfer; in photonics, this separates refractive index sensors from fluorescence and vibrational spectroscopy, while in electrochemistry, it distinguishes Faradaic from non-Faradaic processes. This classification allows us to understand some of the key performance characteristics, such as the susceptibility to fouling and dependence on the clinical matrix that is being analyzed. We discuss the use of labels and the ultimate performance limits, and some of the unique advantages of photonics, such as multicolor operation and fingerprinting, and critically evaluate the requirements for translation of these technologies for clinical use. We trust that this critical review will inform future research in biosensors and support both scientific and commercial developments.
Asynchronous, semi-reverberant elastography
Optical coherence elastography measures elasticity-a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subject with a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.
Exploring the structure, metabolism, and biochemistry of the neuronal microenvironment label-free using fast simultaneous multimodal optical microscopy
The technologies to examine the neuronal microenvironment label free remain critically underexplored. There is a gap in our knowledge of underlying metabolic, biochemical, and electrophysiological mechanisms behind several neurological processes at a cellular level, which can be traced to the lack of versatile and high-throughput tools to investigate neural networks. In this paper, four label-free contrasts were explored as mechanisms to study neuronal activity, namely, scattering, birefringence, autofluorescence from metabolic cofactors and molecules, and local biochemistry. To overcome challenges of observing neuronal activity spanning three orders of magnitude in space and time, microscopes had to be developed to simultaneously capture these contrasts quickly, with high resolution, and over a large FOV. We developed versatile autofluorescence lifetime, multiharmonic generation, polarization-sensitive interferometry, and Raman imaging in epi-detection (VAMPIRE) microscopy to simultaneously observe multiple facets of neuronal structure and dynamics. The accelerated computational-imaging-driven acquisition speeds, the utilization of a single light source to evoke all contrasts, the simultaneous acquisition that provides an otherwise impossible multimodal dynamic imaging capability, and the real-time processing of the data enable VAMPIRE microscopy as a powerful imaging platform for neurophotonics and beyond.
High-speed two-photon microscopy with adaptive line-excitation
We present a two-photon fluorescence microscope designed for high-speed imaging of neural activity at cellular resolution. Our microscope uses an adaptive sampling scheme with line illumination. Instead of building images pixel by pixel via scanning a diffraction-limited spot across the sample, our scheme only illuminates the regions of interest (i.e., neuronal cell bodies) and samples a large area of them in a single measurement. Such a scheme significantly increases the imaging speed and reduces the overall laser power on the brain tissue. Using this approach, we performed high-speed imaging of the neuronal activity in mouse cortex . Our method provides a sampling strategy in laser-scanning two-photon microscopy and will be powerful for high-throughput imaging of neural activity.
Wide-field, high-resolution reconstruction in computational multi-aperture miniscope using a Fourier neural network
Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network's learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.
T staging esophageal tumors with x rays
With histopathology results typically taking several days, the ability to stage tumors during interventions could provide a step change in various cancer interventions. X-ray technology has advanced significantly in recent years with the introduction of phase-based imaging methods. These have been adapted for use in standard labs rather than specialized facilities such as synchrotrons, and approaches that enable fast 3D scans with conventional x-ray sources have been developed. This opens the possibility to produce 3D images with enhanced soft tissue contrast at a level of detail comparable to histopathology, in times sufficiently short to be compatible with use during surgical interventions. In this paper we discuss the application of one such approach to human esophagi obtained from esophagectomy interventions. We demonstrate that the image quality is sufficiently high to enable tumor staging based on the x-ray datasets alone. Alongside detection of involved margins with potentially life-saving implications, staging tumors intra-operatively has the potential to change patient pathways, facilitating optimization of therapeutic interventions during the procedure itself. Besides a prospective intra-operative use, the availability of high-quality 3D images of entire esophageal tumors can support histopathological characterization, from enabling "right slice first time" approaches to understanding the histopathology in the full 3D context of the surrounding tumor environment.
Transport-of-intensity model for single-mask x-ray differential phase contrast imaging
X-ray phase contrast imaging holds great promise for improving the visibility of light-element materials such as soft tissues and tumors. The single-mask differential phase contrast imaging method stands out as a simple and effective approach to yield differential phase contrast. In this work, we introduce a model for a single-mask phase imaging system based on the transport-of-intensity equation. Our model provides an accessible understanding of signal and contrast formation in single-mask x-ray phase imaging, offering a clear perspective on the image formation process, for example, the origin of alternate bright and dark fringes in phase contrast intensity images. Aided by our model, we present an efficient retrieval method that yields differential phase contrast imagery in a single acquisition step. Our model gives insight into the contrast generation and its dependence on the system geometry and imaging parameters in both the initial intensity image as well as retrieved images. The model validity as well as the proposed retrieval method are demonstrated via both experimental results on a system developed in house as well as Monte Carlo simulations. In conclusion, our work not only provides a model for an intuitive visualization of image formation but also offers a method to optimize differential phase imaging setups, holding tremendous promise for advancing medical diagnostics and other applications.
Stimulated emission does not radiate in a pure dipole pattern
Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the ) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.
Low-power, agile electro-optic frequency comb spectrometer for integrated sensors
Acoustic-feedback wavefront-adapted photoacoustic microscopy
Optical microscopy is indispensable to biomedical research and clinical investigations. As all molecules absorb light, optical-resolution photoacoustic microscopy (PAM) is an important tool to image molecules at high resolution without labeling. However, due to tissue-induced optical aberration, the imaging quality degrades with increasing imaging depth. To mitigate this effect, we develop an imaging method, called acoustic-feedback wavefront-adapted PAM (AWA-PAM), to dynamically compensate for tissue-induced aberration at depths. In contrast to most existing adaptive optics assisted optical microscopy, AWA-PAM employs acoustic signals rather than optical signals to indirectly determine the optimized wavefront. To demonstrate this technique, we imaged zebrafish embryos and mouse ears . Experimental results show that compensating for tissue-induced aberration in live tissue effectively improves both signal strength and lateral resolution. With this capability, AWA-PAM reveals fine structures, such as spinal cords and microvessels, that were otherwise unidentifiable using conventional PAM. We anticipate that AWA-PAM will benefit the imaging community and become an important tool for label-free optical imaging in the quasi-ballistic regime.
Label- and slide-free tissue histology using 3D epi-mode quantitative phase imaging and virtual hematoxylin and eosin staining
Histological staining of tissue biopsies, especially hematoxylin and eosin (H&E) staining, serves as the benchmark for disease diagnosis and comprehensive clinical assessment of tissue. However, the typical formalin-fixation, paraffin-embedding (FFPE) process is laborious and time consuming, often limiting its usage in time-sensitive applications such as surgical margin assessment. To address these challenges, we combine an emerging 3D quantitative phase imaging technology, termed quantitative oblique back illumination microscopy (qOBM), with an unsupervised generative adversarial network pipeline to map qOBM phase images of unaltered thick tissues (i.e., label- and slide-free) to virtually stained H&E-like (vH&E) images. We demonstrate that the approach achieves high-fidelity conversions to H&E with subcellular detail using fresh tissue specimens from mouse liver, rat gliosarcoma, and human gliomas. We also show that the framework directly enables additional capabilities such as H&E-like contrast for volumetric imaging. The quality and fidelity of the vH&E images are validated using both a neural network classifier trained on real H&E images and tested on virtual H&E images, and a user study with neuropathologists. Given its simple and low-cost embodiment and ability to provide real-time feedback , this deep-learning-enabled qOBM approach could enable new workflows for histopathology with the potential to significantly save time, labor, and costs in cancer screening, detection, treatment guidance, and more.
volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography
Motile cilia are dynamic hair-like structures covering epithelial surfaces in multiple organs. The periodic coordinated beating of cilia creates waves propagating along the surface, known as the metachronal waves, which transport fluids and mucus along the epithelium. Motile ciliopathies result from disrupted coordinated cilia beating and are associated with serious clinical complications, including reproductive disorders. Despite the recognized clinical significance, research of cilia dynamics is extremely limited. Here, we present quantitative imaging of cilia metachronal waves volumetrically through tissue layers using dynamic optical coherence tomography (OCT). Our method relies on spatiotemporal mapping of the phase of intensity fluctuations in OCT images caused by the ciliary beating. We validated our new method and implemented it to visualize cilia metachronal wave propagation within the mouse fallopian tube. This method can be extended to the assessment of physiological cilia function and ciliary dyskinesias in various organ systems, contributing to better management of pathologies associated with motile ciliopathies.
Adaptive time modulation technique for multiplexed on-chip particle detection across scales
Integrated optofluidic biosensors have demonstrated ultrasensitivity down to single particle detection and attomolar target concentrations. However, a wide dynamic range is highly desirable in practice and can usually only be achieved by using multiple detection modalities or sacrificing linearity. Here, we demonstrate an analysis technique that uses temporal excitation at two different time scales to simultaneously enable digital and analog detection of fluorescent targets. We demonstrated the seamless detection of nanobeads across eight orders of magnitude from attomolar to nanomolar concentration. Furthermore, a combination of spectrally varying modulation frequencies and a closed-loop feedback system that provides rapid adjustment of excitation laser powers enables multiplex analysis in the presence of vastly different concentrations. We demonstrated this ability to detect across scales via an analysis of a mixture of fluorescent nanobeads at femtomolar and picomolar concentrations. This technique advances the performance and versatility of integrated biosensors, especially toward point-of-use applications.
High-throughput deep tissue two-photon microscopy at kilohertz frame rates
High-speed laser scanning microscopes are essential for monitoring fast biological phenomena. However, existing strategies that achieve millisecond time resolution with two-photon microscopes (2PMs) are generally technically challenging and suffer from compromises among imaging field of view, excitation efficiency, and depth penetration in thick tissue. Here, we present a versatile solution that enables a conventional video-rate 2PM to perform 2D scanning at kilohertz frame rates over large fields of view. Our system is based on implementation of a scan multiplier unit that provides inertia-free multiplication of the scanning speed while preserving all the benefits of standard 2PM. We demonstrate kilohertz subcellular-resolution 2PM imaging with an order of magnitude higher imaging throughput than previously achievable and penetration depths exceeding 500 μm, which we apply to the study of neurovascular coupling dynamics in the mouse brain.
Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform
In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single SiN ridge waveguide integrated with an extended LiNbO slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.
