Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration
This comprehensive review explores the multifaceted landscape of skin bioprinting, revolutionizing dermatological research. The applications of skin bioprinting utilizing techniques like extrusion-, droplet-, laser- and light-based methods, with specialized bioinks for skin biofabrication have been critically reviewed along with the intricate aspects of bioprinting hair follicles, sweat glands, and achieving skin pigmentation. Challenges remain with the need for vascularization, safety concerns, and the integration of automated processes for effective clinical translation. The review further investigates the incorporation of biosensor technologies, emphasizing their role in monitoring and enhancing the wound healing process. While highlighting the remarkable progress in the field, critical limitations and concerns are critically examined to provide a balanced perspective. This synthesis aims to guide scientists, engineers, and healthcare providers, fostering a deeper understanding of the current state, challenges, and future directions in skin bioprinting for transformative applications in tissue engineering and regenerative medicine.
3D Bioprinted Chondrogenic Gelatin Methacrylate-Poly(ethylene glycol) Diacrylate Composite Scaffolds for Intervertebral Disc Restoration
Degenerative spine pathologies, including intervertebral disc (IVD) degeneration, present a significant healthcare challenge due to their association with chronic pain and disability. This study explores an innovative approach to IVD regeneration utilizing 3D bioprinting technology, specifically visible light-based digital light processing (VL-DLP), to fabricate tissue scaffolds that closely mimic the native architecture of the IVD. Utilizing a hybrid bioink composed of gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) at a 10% concentration, we achieved enhanced printing fidelity and mechanical properties suitable for load-bearing applications such as the IVD. Preconditioning rat bone marrow-derived mesenchymal stem cell (rBMSC) spheroids with chondrogenic media before incorporating them into the GelMA-PEGDA scaffold further promoted the regenerative capabilities of this system. Our findings demonstrate that this bioprinted scaffold not only supports cell viability and integration but also contributes to the restoration of disc height in a rat caudal disc model without inducing adverse inflammatory responses. The study underscores the potential of combining advanced bioprinting techniques and cell preconditioning strategies to develop effective treatments for IVD degeneration and other musculoskeletal disorders, highlighting the need for further research into the dynamic interplay between cellular migration and the hydrogel matrix.
Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum (Ta)-Copper (Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological, mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta (10Ta) and 3 wt.% Cu (3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against and strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e. 78%-86% with respect to CpTi. Mechanical properties for Ti3Al2V-10Ta-3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with 10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse inflammatory response . Our results establish the Ti3Al2V-10Ta-3Cu alloy's synergistic effect on improving both biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
Porous metal implants: processing, properties, and challenges
Porous and functionally graded materials have seen extensive applications in modern biomedical devices-allowing for improved site-specific performance; their appreciable mechanical, corrosive, and biocompatible properties are highly sought after for lightweight and high-strength load-bearing orthopedic and dental implants. Examples of such porous materials are metals, ceramics, and polymers. Although, easy to manufacture and lightweight, porous polymers do not inherently exhibit the required mechanical strength for hard tissue repair or replacement. Alternatively, porous ceramics are brittle and do not possess the required fatigue resistance. On the other hand, porous biocompatible metals have shown tailorable strength, fatigue resistance, and toughness. Thereby, a significant interest in investigating the manufacturing challenges of porous metals has taken place in recent years. Past research has shown that once the advantages of porous metallic structures in the orthopedic implant industry have been realized, their biological and biomechanical compatibility-with the host bone-has been followed up with extensive methodical research. Various manufacturing methods for porous or functionally graded metals are discussed and compared in this review, specifically, how the manufacturing process influences microstructure, graded composition, porosity, biocompatibility, and mechanical properties. Most of the studies discussed in this review are related to porous structures for bone implant applications; however, the understanding of these investigations may also be extended to other devices beyond the biomedical field.
