Applied Materials Today

Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds
Snyder Y, Mann FT, Middleton J, Murashita T, Carney J, Bianco RW and Jana S
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Nanobioactive Blood-Derived Shear-Thinning Biomaterial for Tissue Engineering Applications
Gangrade A, Zehtabi F, Rashad A, Haghniaz R, Falcone N, Mandal K, Khosravi S, Deka S, Yamauchi A, Voskanian L, Kim HJ, Ermis M, Khademhosseini A and de Barros NR
The conventional technique for successful bone grafts, involving the use of a patienťs own tissue (autografts), is challenged by limited availability and donor site morbidity. While allografts and xenografts offer alternatives, they come with the risk of rejection. This underscores the pressing need for tailor-made artificial bone graft materials. In this context, injectable hydrogels are emerging as a promising solution for bone regeneration, especially in complex maxillofacial reconstruction cases. These hydrogels can seamlessly adapt to irregular shapes and conservatively fill defects. Our study introduces a shear-thinning biomaterial by blending silicate nanoplatelets (SNs) enriched with human blood-derived plasma rich in growth factors (PRGF) for personalized applications. Notably, our investigations unveil that injectable hydrogel formulations comprising 7.5% PRGF yield sustained protein and growth factor release, affording precise control over critical growth factors essential for tissue regeneration. Moreover, our hydrogel exhibits exceptional biocompatibility in vitro and in vivo and demonstrates hemostatic properties. The hydrogel also presents a robust angiogenic potential and an inherent capacity to promote bone differentiation, proven through Alizarin Red staining, gene expression, and immunostaining assessments of bone-related biomarkers. Given these impressive attributes, our hydrogel stands out as a leading candidate for maxillofacial bone regeneration application. Beyond this, our findings hold immense potential in revolutionizing the field of regenerative medicine, offering an influential platform for crafting precise and effective therapeutic strategies.
Novel bioengineering strategies for drug delivery systems
Jang Y, Kim A, Moon JJ, Lee JY and Park H
Cellular membrane-derived vesicles (CMVs) have recently attracted attention as a drug delivery system (DDS) because CMVs offer unique advantages, including nanosized particles, superior transcellular cross-communication, excellent biocompatibility, and active targeting ability. However, some challenges remain in the design and production of CMVs, such as their low yield, chemical and mechanical instability, and difficulties in functionalizing membrane surfaces. In this paper, we introduce three strategies to overcome the limitation of CMVs. First, hybrid vesicles combined CMVs from cellular membranes with synthetic liposomes (SLs) offer new engineering solutions to tackle such issues. The membrane fusion of SLs and CMVs can increase their production yield and stability while allowing for the presentation of surface proteins from donor cells. Additional compounds, such as targeted ligands and imaging agents, can be easily integrated into CMVs by using functionalized SLs. Second, core/shell nanostructures composed of synthetic nanoparticles as cores and cell membrane structures as shells can offer unique advantages for improving the stability and preservation of the inherent capabilities of the various nanoparticles in these core/shell nanostructures. Lastly, CMV/scaffold complexes are also a pronounced approach for DDSs because the scaffold structures help CMVs or loaded therapeutic agents to sustained release. The sustainable released system extends the bioavailability of CMVs or loaded therapeutic agents for a long time . Altogether, we suggest a combination strategy of hybrid vesicle-coated nanoparticles or hybrid vesicle/scaffold complex could be a promising drug delivery system.
Research progress in preparation, properties, and applications of medical protective fiber materials
Su X, Jia C, Xiang H and Zhu M
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up
Cimini A, Imperi E, Picano A and Rossi M
Face masks have proven to be a useful protection from airborne viruses and bacteria, especially in the recent years pandemic outbreak when they effectively lowered the risk of infection from Coronavirus disease (COVID-19) or Omicron variants, being recognized as one of the main protective measures adopted by the World Health Organization (WHO). The need for improving the filtering efficiency performance to prevent penetration of fine particulate matter (PM), which can be potential bacteria or virus carriers, has led the research into developing new methods and techniques for face mask fabrication. In this perspective, Electrospinning has shown to be the most efficient technique to get either synthetic or natural polymers-based fibers with size down to the nanoscale providing remarkable performance in terms of both particle filtration and breathability. The aim of this Review is to give further insight into the implementation of electrospun nanofibers for the realization of the next generation of face masks, with functionalized membranes via addiction of active material to the polymer solutions that can give optimal features about antibacterial, antiviral, self-sterilization, and electrical energy storage capabilities. Furthermore, the recent advances regarding the use of renewable materials and green solvent strategies to improve the sustainability of electrospun membranes and to fabricate eco-friendly filters are here discussed, especially in view of the large-scale nanofiber production where traditional membrane manufacturing may result in a high environmental and health risk.
Clear polyurethane coatings with excellent virucidal properties: Preparation, characterization and rapid inactivation of human coronaviruses 229E and SARS-CoV-2
Salgado C, Cue R, Yuste V, Montalvillo-Jiménez L, Prendes P, Paz S, Vázquez-Calvo Á, Alcamí A, García C, Martínez-Campos E and Bosch P
Commercial polyurethane (PU) coating formulations have been modified with 1-(hydroxymethyl)-5,5-dimethylhydantoin (HMD) both in bulk (0.5 and 1% w/w) and onto the coatings surface as an N-halamine precursor, to obtain clear coatings with high virucidal activity. Upon immersion in diluted chlorine bleaching, the hydantoin structure on the grafted PU membranes was transformed into N-halamine groups, with a high surface chlorine concentration (40-43μg/cm). Fourier transform infrared spectroscopy (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and iodometric titration were used to characterize the coatings and quantify the chlorine contents of the PU membranes after chlorination. Biological evaluation of their activity against (Gram-positive bacteria) and human coronaviruses HCoV-229E and SARS-CoV-2 was performed, and high inactivation of these pathogens was observed after short contact times. The inactivation of HCoV-229E was higher than 98% for all modified samples after just 30 minutes, whereas it was necessary 12 hours of contact time for complete inactivation of SARS-CoV-2. The coatings were fully rechargeable by immersion in diluted chlorine bleach (2% v/v) for at least 5 chlorination-dechlorination cycles. Moreover, the performance of the antivirus efficiency of the coatings is considered as long-lasting, because experiments of reinfection of the coatings with HCoV-229E coronavirus did not show any loss of the virucidal activity after three consecutive infection cycles without reactivation of the N-halamine groups.
Ink Material Selection and Optical Design Considerations in DLP 3D Printing
Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H, Ionov L and Miri AK
Digital light processing (DLP) 3D printing has become a powerful manufacturing tool for the fast fabrication of complex functional structures. The rapid progress in DLP printing has been linked to research on optical design factors and ink selection. This highlights the main challenges in the DLP printing of photopolymerizable inks. The kinetics equations of photopolymerization reaction in a DLP printer are solved, and the dependence of curing depth on the process optical parameters and ink chemical properties are explained. Developments in DLP platform design and ink selection are summarized, and the roles of monomer structure and molecular weight on DLP printing resolution are shown by experimental data. A detailed guideline is presented to help engineers and scientists to select inks and optical parameters for fabricating functional structures for multi-material and 4D printing applications.
Recent advances in organoid engineering: A comprehensive review
Unagolla JM and Jayasuriya AC
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function . The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout
Kim J, Mayorga-Martinez CC, Vyskočil J, Ruzek D and Pumera M
The coronavirus disease 2019 (COVID-19) has prompted an urgent demand for nanotechnological solutions towards the global healthcare crisis, particularly in the field of diagnostics, vaccines, and therapeutics. As an emerging tool for nanoscience and technology, micro/nanorobots have demonstrated advanced performances, such as self-propelling, precise maneuverability, and remote actuation, thus hold great potential to provide breakthroughs in the COVID-19 pandemic. Here we show a plasmonic-magnetic nanorobot-based simple and efficient COVID-19 detection assay through an electronic readout signal. The nanorobots consist of FeO backbone and the outer surface of Ag, that rationally designed to perform magnetic-powered propulsion and navigation, concomitantly the probe nucleic acids transport and release upon the hybridization which can be quantified with the differential pulse voltammetry (DPV) technique. The magnetically actuated nanorobots swarming enables enhanced micromixing and active targeting, thereby promoting binding kinetics. Experimental results verified the enhanced sensing efficiency, with nanomolar detection limit and high selectivity. Further testing with extracted SARS-CoV-2 viral RNA samples validated the clinical applicability of the proposed assay. This strategy is versatile to extend targeting various nucleic acids, thus it could be a promising detection tool for other emerging pathogens, environmental toxins, and forensic analytes.
State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S and Duan B
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing
Mayorga-Martinez CC, Vyskočil J, Novotný F, Bednar P, Ruzek D, Alduhaishe O and Pumera M
Mobile self-propelled micro/nanorobots are mobile binding surface that improved the sensitivity of many biosensing system by "on-the-fly" identification and isolation of different biotargets. Proteins are powerful tools to predict infectious disease progression such as COVID-19. The main methodology used to COVID-19 detection is based on ELISA test by antibodies detection assays targeting SARS-CoV-2 virus spike protein and nucleocapside protein that represent an indirect SARS-CoV-2 detection with low sentitivy and specificity. Moreover ELISA test are limited to used external shaker to obtain homogenously immobilization of antibodies and protein on sensing platform. Here, we present magnetic microrobots that collective self-assembly through immuno-sandwich assay and they can be used as mobile platform to detect on-the-fly SARS-CoV-2 virus particle by its spike protein. The collective self-assembly of magnetic microrobots through immuno-sandwich assay enhanced its analytical performance in terms of sensitivity decreasing the detection limit of SARS-CoV-2 virus by one order of magnitude with respect to the devices previously reported. This proof-of-concept of microrobotics offer new ways to the detection of viruses and proteins of medical interest in general.
Lipid bilayer coatings for rapid enzyme-linked immunosorbent assay
Yoon BK, Sut TN, Yoo KY, Lee SH, Hwang Y, Jackman JA and Cho NJ
The enzyme-linked immunosorbent assay (ELISA) is a widely used method for protein detection and relies on the specific capture of target proteins while minimizing the nonspecific binding of other interfering proteins and biomolecules. To prevent nonspecific binding events, blocking agents such as bovine serum albumin (BSA) protein, mixtures of proteins in media such as milk or serum, and/or surfactants are typically added to ELISA plates after probe attachment and before analyte capture. Herein, we developed a streamlined ELISA strategy in which readily prepared lipid nanoparticles are utilized as the blocking agent and are added together with the probe molecule to the ELISA plate, resulting in fewer processing steps, quicker protocol time, and superior detection performance compared to conventional BSA blocking. These measurement capabilities were established for coronavirus disease-2019 (COVID-19) antibody detection in saline and human serum conditions and are broadly applicable for developing rapid ELISA diagnostics.
Fibrous heart valve leaflet substrate with native-mimicked morphology
Jana S, Franchi F and Lerman A
Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.
Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms
Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ and Handa H
Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.
Nanoclay Promotes Mouse Cranial Bone Regeneration Mainly through Modulating Drug Binding and Sustained Release
Hu J, Miszuk JM, Stein KM and Sun H
Nanoclay (Nanosilicates, NS) is appearing as an intriguing 2D nanomaterial for bone tissue engineering with multiple proposed functions, e.g., intrinsic osteoinductivity, improving mechanical properties, and drug release capacity. However, the mechanism of NS for bone regeneration has been hardly defined so far. This knowledge gap will significantly affect the design/application of NS-based biomaterials. To determine the role of NS in osteoblastic differentiation and bone formation, we used the mouse calvarial-derived pre-osteoblasts (MC3T3-E1) and a clinically-relevant mouse cranial bone defect model. Instead of a hydrogel, we prepared biomimetic 3D gelatin nanofibrous scaffolds (GF) and NS-blended composite scaffolds (GF/NS) to determine the essential role of NS in critical low-dose (0.5 μg per scaffold) of BMP2-induced cranial bone regeneration. In contrast to "osteoinductivity", our data indicated that NS could enable single-dose of BMP2, promoting significant osteoblastic differentiation while multiple-dose of BMP2 (without NS) was required to achieve similar efficacy. Moreover, our release study revealed that direct binding to NS in GF scaffolds provided stronger protection to BMP2 and sustained release compared to GF/NS composite scaffolds. Consistently, our data indicated that only BMP2/NS direct binding treatment was able to repair the large mouse cranial bone defects after 6 weeks of transplantation while neither BMP2, NS alone, nor BMP2 released from GF/NS scaffolds was sufficient to induce significant cranial bone defect repair. Therefore, we concluded that direct nanoclay-drug binding enabled sustained release is the most critical contribution to the significantly improved bone regeneration compared to other possible mechanisms based on our study.
3D Printing metamaterials towards tissue engineering
Dogan E, Bhusal A, Cecen B and Miri AK
The rapid growth and disruptive potentials of three-dimensional (3D) printing demand further research for addressing fundamental fabrication concepts and enabling engineers to realize the capabilities of 3D printing technologies. There is a trend to use these capabilities to develop materials that derive some of their properties via their structural organization rather than their intrinsic constituents, sometimes referred to as mechanical metamaterials. Such materials show qualitatively different mechanical behaviors despite using the same material composition, such as ultra-lightweight, super-elastic, and auxetic structures. In this work, we review current advancements in the design and fabrication of multi-scale advanced structures with properties heretofore unseen in well-established materials. We classify the fabrication methods as conventional methods, additive manufacturing techniques, and 4D printing. Following a comprehensive comparison of different fabrication methods, we suggest some guidelines on the selection of fabrication parameters to construct meta-biomaterials for tissue engineering. The parameters include multi-material capacity, fabrication resolution, prototyping speed, and biological compatibility.
Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization
Ćatić N, Wells L, Al Nahas K, Smith M, Jing Q, Keyser UF, Cama J and Kar-Narayan S
Microfluidics has emerged as a powerful analytical tool for biology and biomedical research, with uses ranging from single-cell phenotyping to drug discovery and medical diagnostics, and only small sample volumes required for testing. The ability to rapidly prototype new designs is hugely beneficial in a research environment, but the high cost, slow turnaround, and wasteful nature of commonly used fabrication techniques, particularly for complex multi-layer geometries, severely impede the development process. In addition, microfluidic channels in most devices currently play a passive role and are typically used to direct flows. The ability to "functionalize" the channels with different materials in precise spatial locations would be a major advantage for a range of applications. This would involve incorporating functional materials directly within the channels that can partake in, guide or facilitate reactions in precisely controlled microenvironments. Here we demonstrate the use of Aerosol Jet Printing (AJP) to rapidly produce bespoke molds for microfluidic devices with a range of different geometries and precise "in-channel" functionalization. We show that such an advanced microscale additive manufacturing method can be used to rapidly design cost-efficient and customized microfluidic devices, with the ability to add functional coatings at specific locations within the microfluidic channels. We demonstrate the functionalization capabilities of our technique by specifically coating a section of a microfluidic channel with polyvinyl alcohol to render it hydrophilic. This versatile microfluidic device prototyping technique will be a powerful aid for biological and bio-medical research in both academic and industrial contexts.
Biomimetic metal-organic nanoparticles prepared with a 3D-printed microfluidic device as a novel formulation for disulfiram-based therapy against breast cancer
Chang Y, Jiang J, Chen W, Yang W, Chen L, Chen P, Shen J, Qian S, Zhou T, Wu L, Hong L, Huang Y and Li F
Disulfiram (DSF) is currently tested in several clinical trials for cancer treatment in combination with copper (Cu) ions. Usually, DSF and Cu are administered in two separate formulations. In the body, DSF and Cu ions form diethyldithiocarbamate copper complex [Cu(DDC)] which has potent antitumor activities. However, the "two formulation" approach often achieved low Cu(DDC) concentration at tumor regions and resulted in compromised anticancer efficacy. Therefore, preformed Cu(DDC) complex administered in a single formulation will have better anticancer efficacy. However, the poor aqueous solubility of Cu(DDC) is a significant challenge for its clinical use. In this work, a biomimetic nanoparticle formulation of Cu(DDC) was produced with a novel tabilized etal on igand complx) method developed in our laboratory to address the drug delivery challenges. The Metal-organic Nanoparticle (MON) is composed of Cu(DDC) metal-organic complex core and surface decorated bovine serum albumin (BSA). Importantly, we designed a 3D-printed microfluidic device to further improve the fabrication of BSA/Cu(DDC) MONs. This method could precisely control the MON preparation process and also has great potential for large scale production of Cu(DDC) MON formulations. We also used a computational modeling approach to simulate the MON formation process in the microfluidic device. The optimized BSA/Cu(DDC) MONs demonstrated good physicochemical properties. The MONs also showed potent antitumor activities in the breast cancer cell monolayers as well as the 3D-cultured tumor spheroids. The BSA/Cu(DDC) MONs also effectively inhibited the growth of tumors in an 4T1 breast tumor model. This current study provided a novel method to prepare a biomimetic MON formulation for DSF/Cu cancer therapy.
Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives
Unagolla JM and Jayasuriya AC
Hydrogel plays a vital role in cell-laden three dimensional (3D) bioprinting, whereas those hydrogels mimic the physical and biochemical characteristics of native extracellular matrix (ECM). The complex microenvironment of the ECM does not replicate from the traditional static microenvironment of the hydrogel, but the evolution of the 3D bioprinting facilitates to accommodate the dynamic modulation and spatial heterogeneity of the hydrogel system. Selection of hydrogel for 3D bioprinting depends on the printing techniques including microextrusion, inkjet, laser-assisted printing, and stereolithography. In this review, we specifically cover the 3D printable hydrogels where cells can be encapsulated without significant reduction in the cell viability. The recent research highlights of the most widely used hydrogel materials are elucidated in terms of stability of the hydrogel system, cross-linking method, support cell types and their post-printing cell viability. Also, the techniques used to improve the mechanical and biological properties of the hydrogels, such as adding various organic and inorganic materials and making microchannels, are discussed. Furthermore, the recent advances in vascularized tissue construct and scaffold-free bioprinting as a promising method for vascularization are covered in this review. The recent trends in four-dimensional (4D) bioprinting as a stimuli-responsive formation of new organs, and 3D bioprinting based organ-on-chip systems are also discussed.
ECM-mimicking nanofibrous matrix coaxes macrophages toward an anti-inflammatory phenotype: Cellular behaviors and transcriptome analysis
Wu RX, Ma C, Liang Y, Chen FM and Liu X
An in-depth understanding of biomaterial cues to selectively polarize macrophages is beneficial in the design of "immuno-informed" biomaterials that positively interact with the immune system to dictate a favorable macrophage response following implantation. Given the promising future of ECM-mimicking nanofibrous biomaterials in biomedical application, it is essential to elucidate how their intrinsic cues, especially the nanofibrous architecture, affect macrophages. In the present study, we evaluated how the nanofibrous architecture of a gelatin matrix modulated macrophage responses from the perspectives of cellular behaviors and a transcriptome analysis. In our results, the nanofibrous surface attenuated M1 polarization and down-regulated the inflammatory responses of macrophages compared with a smooth surface. Besides, the cell-material interaction was up-regulated and the adhered macrophages tended to maintain an original, non-polarized state on the nanofibrous matrix. Accordingly, whole transcriptome analysis revealed that nanofibrous architecture up-regulated the pathways related to ECM-receptor interaction and down-regulated pathways related to pro-inflammation. This study provides a panoramic view of the interaction between macrophages and nanofibers, and offers valuable information for the design of immunomodulatory ECM-mimicking biomaterials for tissue regeneration.
Nitrogen and Boron Dual-Doped Graphene Quantum Dots for Near-Infrared Second Window Imaging and Photothermal Therapy
Wang H, Mu Q, Wang K, Revia RA, Yen C, Gu X, Tian B, Liu J and Zhang M
Fluorescence imaging of biological systems in the second near-infrared window (NIR-II) has recently drawn much attention because of its negligible background noise of autofluorescence and low tissue scattering. Here we present a new NIR-II fluorescent agent, graphene quantum dots dual-doped with both nitrogen and boron (N-B-GQDs). N-B-GQDs have an ultra-small size (~ 5 nm), are highly stable in serum, and demonstrate a peak fluorescent emission at 1000 nm and high photostability. In addition to the NIR-II imaging capability, N-B-GQDs efficiently absorb and convert NIR light into heat when irradiated by an external NIR source, demonstrating a photothermal therapeutic effect that kills cancer cells in vitro and completely suppresses tumor growth in a glioma xenograft mouse model. N-B-GQDs demonstrate a safe profile, prolonged blood half-life, and rapid excretion in mice, which are the characteristics favorable for in vivo biomedical applications.