Quantum Science and Technology

An optically pumped magnetic gradiometer for the detection of human biomagnetism
Cook H, Bezsudnova Y, Koponen LM, Jensen O, Barontini G and Kowalczyk AU
We realise an intrinsic optically pumped magnetic gradiometer based on non-linear magneto-optical rotation. We show that our sensor can reach a gradiometric sensitivity of 18 fT and can reject common mode homogeneous magnetic field noise with up to 30 dB attenuation. We demonstrate that our magnetic field gradiometer is sufficiently sensitive and resilient to be employed in biomagnetic applications. In particular, we are able to record the auditory evoked response of the human brain, and to perform real-time magnetocardiography in the presence of external magnetic field disturbances. Our gradiometer provides complementary capabilities in human biomagnetic sensing to optically pumped magnetometers, and opens new avenues in the detection of human biomagnetism.
High coherence plane breaking packaging for superconducting qubits
Bronn NT, Adiga VP, Olivadese SB, Wu X, Chow JM and Pappas DP
We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.
Rigidity of the magic pentagram game
Kalev A and Miller CA
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.