GLOBAL BIOGEOCHEMICAL CYCLES

Blue Carbon Stocks Along the Pacific Coast of North America Are Mainly Driven by Local Rather Than Regional Factors
Janousek CN, Krause JR, Drexler JZ, Buffington KJ, Poppe KL, Peck E, Adame MF, Watson EB, Holmquist J, Bridgham SD, Jones SF, Ward M, Brown CA, Beers L, Costa MT, Diefenderfer HL, Borde AB, Sheehan L, Rybczyk J, Prentice C, Gray AB, Hinojosa-Corona A, Ruiz-Fernández AC, Sanchez-Cabeza JA, Kohfeld KE, Ezcurra P, Ochoa-Gómez J, Thorne KM, Pellatt MG, Ricart AM, Nahlik AM, Brophy LS, Ambrose RF, Lutz M, Cornu C, Crooks S, Windham-Myers L, Hessing-Lewis M, Short FT, Chastain S, Williams T, Douglas T, Fard E, Brown L and Goman M
Coastal wetlands, including seagrass meadows, emergent marshes, mangroves, and temperate tidal swamps, can efficiently sequester and store large quantities of sediment organic carbon (SOC). However, SOC stocks may vary by ecosystem type and along environmental or climate gradients at different scales. Quantifying such variability is needed to improve blue carbon accounting, conservation effectiveness, and restoration planning. We analyzed SOC stocks in 1,284 sediment cores along>6,500 km of the Pacific coast of North America that included large environmental gradients and multiple ecosystem types. Tidal wetlands with woody vegetation (mangroves and swamps) had the highest mean stocks to 1 m depth (357 and 355 Mg ha, respectively), 45% higher than marshes (245 Mg ha), and more than 500% higher than seagrass (68 Mg ha). Unvegetated tideflats, though not often considered a blue carbon ecosystem, had noteworthy stocks (148 Mg ha). Stocks increased with tidal elevation and with fine (<63 μm) sediment content in several ecosystems. Stocks also varied by dominant plant species within individual ecosystem types. At larger scales, marsh stocks were lowest in the Sonoran Desert region of Mexico, and swamp stocks differed among climate zones; otherwise stocks showed little correlation with ecoregion or latitude. More variability in SOC occurred among ecosystem types, and at smaller spatial scales (such as individual estuaries), than across regional climate gradients. These patterns can inform coastal conservation and restoration priorities across scales where preserving stored carbon and enhancing sequestration helps avert greenhouse gas emissions and maintains other vital ecosystem services.
Particulate Cadmium Accumulation in the Mesopelagic Ocean
Laubach A, Lee JM, Sieber M, Lanning NT, Fitzsimmons JN, Conway TM and Lam PJ
Observations of dissolved cadmium (dCd) and phosphate (PO) suggest an unexplained loss of dCd to the particulate phase in tropical oxyclines. Here, we compile existing observations of particulate Cd and phosphorus (P), and present new data from the US GEOTRACES GP15 Pacific Meridional Transect to examine this phenomenon from a particulate Cd perspective. We use a simple algorithm to reproduce station depth profiles of particulate Cd and P via regeneration and possible subsurface accumulation. Our examination of regeneration reveals decoupling of particulate Cd and P driven by variable partitioning between two particulate pools with differing labilities. Further, we identify evidence for subsurface particulate Cd accumulation at 31 stations. Subsurface particulate Cd accumulation occurs most consistently in the mesopelagic tropical Pacific but can be found in all examined ocean basins. This accumulation is not well-correlated with dissolved oxygen or particulate sulfide concentration. Instead, we observe that particulate Cd accumulation occurs in regions where the concentration of dCd is relatively high compared to dissolved zinc (dZn) and speculate that it is the result of enhanced dCd biological uptake in response to the subsurface micronutrient balance.
A Close Look at Dissolved Silica Dynamics in Disko Bay, West Greenland
Hopwood MJ, Carroll D, Gu Y, Huang X, Krause J, Cozzi S, Cantoni C, Gastelu Barcena MF, Carroll S and Körtzinger A
Discharge of calved ice, runoff and mixing driven by subglacial discharge plumes likely have consequences for marine biogeochemistry in Disko Bay, which hosts the largest glacier in the northern hemisphere, Sermeq Kujalleq. Glacier retreat and increasing runoff may impact the marine silica cycle because glaciers deliver elevated concentrations of dissolved silica (dSi) compared to other macronutrients. However, the annual flux of dSi delivered to the ocean from the Greenland Ice Sheet is poorly constrained because of difficulties distinguishing the overlapping influence of different dSi sources. Here we constrain silica dynamics around Disko Bay, including the Ilulissat Icefjord and four other regions receiving glacier runoff with contrasting levels of productivity and turbidity. Both dissolved silica and Si* ([dSi]-[NO ]) concentrations indicated conservative dynamics in two fjords with runoff from land-terminating glaciers, consistent with the results of mixing experiments. In three fjords with marine-terminating glaciers, macronutrient-salinity distributions were strongly affected by entrainment of nutrients in subglacial discharge plumes. Entrainment of dSi from saline waters explained 93 ± 51% of the dSi enrichment in the outflowing plume from Ilulissat Icefjord, whereas the direct contribution of freshwater to dSi in the plume was likely 0%-3%. Whilst not distinguished herein, other minor regional dSi sources include icebergs and dissolution of amorphous silica (aSi) in either pelagic or benthic environments. Our results suggest that runoff around Greenland is supplemented as a dSi source by minor fluxes of 0.25 ± 0.67 Gmol yr dSi from icebergs and ∼1.9 Gmol year from pelagic aSi dissolution.
Heat and Drought Events Alter Biogenic Capacity to Balance CO Budget in South-Western Europe
Segura-Barrero R, Lauvaux T, Lian J, Ciais P, Badia A, Ventura S, Bazzi H, Abbessi E, Fu Z, Xiao J, Li X and Villalba G
Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in . As a result, there is a modest increase in the net carbon sink of 0.69 gC m yr but with high spatial and annual variability. The heatwave of 2022 reduced net carbon uptake by 91.7 TgC, a 26.4% decrease from the mean. The interannual variability of NEE is more influenced by drought in temperate humid regions than in Mediterranean semi-arid regions. These results emphasize the vulnerability of the net carbon sink as drying trends could revert the NEE trends, as it is happening for croplands in the French Central Massif.
The Contrasting Role of Marine- and Land-Terminating Glaciers on Biogeochemical Cycles in Kongsfjorden, Svalbard
Schmidt CE, Pröfrock D, Steinhoefel G, Stichel T, Mears C, Wehrmann LM and Thomas H
This case study of Kongsfjorden, western coastal Svalbard, provides insights on how freshwater runoff from marine- and land-terminating glaciers influences the biogeochemical cycles and distribution patterns of carbon, nutrients, and trace elements in an Arctic fjord system. We collected samples from the water column at stations along the fjord axis and proglacial river catchments, and analyzed concentrations of dissolved trace elements, together with dissolved nutrients, as well as alkalinity and dissolved inorganic carbon. Statistical tools were applied to identify and quantify biogeochemical processes within the fjord that govern the constituent distributions. Our results suggest that the glacier type affects nutrient availability and, therefore, primary production. Glacial discharge from both marine-terminating glaciers and riverine discharge from land-terminating glaciers are important sources of dissolved trace elements (dAl, dMn, dCo, dNi, dCu, and dPb) that are involved in biological and scavenging processes within marine systems. We identified benthic fluxes across the sediment-water interface to supply fjord waters with silicate, dFe, dCu, and dZn. Our data show that intensive carbonate weathering in proglacial catchments supplies fjord waters with additional dissolved carbonates and, therefore, attenuates reduced buffering capacities caused by glacial runoff. Our study provides valuable insight into biogeochemical processes and carbon cycling within a climate-sensitive, high-latitude fjord region, which may help predict Arctic ecosystem changes in the future.
Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data
Westbrook HC, Bourbonnais A, Manning CCM, Tremblay JÉ, Ahmed MMM, Else B and Granger J
Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian Arctic Archipelago and Baffin Bay due to increased discharge from glacial meltwater and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters, dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity in Arctic ecosystems. Yet, few DON data for this region exist. We measured concentrations and stable isotope ratios of DON (δN) and nitrate (NO ; δN and δO) to investigate the sources and cycling of dissolved nitrogen in regional rivers and marine samples collected in the Eastern Canadian Arctic Archipelago and Baffin Bay during the summer of 2019. The isotopic signatures of NO in rivers could be reproduced in a steady state isotopic model by invoking mixing between atmospheric NO and nitrified ammonium as well as NO assimilation by phytoplankton. DON concentrations were low in most rivers (≤4.9 μmol N L), whereas the concentrations (0.54-12 μmol N L) and δN of DON (-0.71-9.6‰) at the sea surface were variable among stations, suggesting dynamic cycling and/or distinctive sources. In two regions with high chlorophyll-a, DON concentrations were inversely correlated with chlorophyll-a and the δN of DON, suggesting net DON consumption in localized phytoplankton blooms. We derived an isotope effect of 6.9‰ for DON consumption. Our data helps establish a baseline to assess future changes in the nutrient regime for this climate-sensitive region.
The Role of Wildfires in the Interplay of Forest Carbon Stocks and Wood Harvest in the Contiguous United States During the 20th Century
Magerl A, Gingrich S, Matej S, Cunfer G, Forrest M, Lauk C, Schlaffer S, Weidinger F, Yuskiw C and Erb KH
Wildfires and land use play a central role in the long-term carbon (C) dynamics of forested ecosystems of the United States. Understanding their linkages with changes in biomass, resource use, and consumption in the context of climate change mitigation is crucial. We reconstruct a long-term C balance of forests in the contiguous U.S. using historical reports, satellite data, and other sources at multiple scales (national scale 1926-2017, regional level 1941-2017) to disentangle the drivers of biomass C stock change. The balance includes removals of forest biomass by fire, by extraction of woody biomass, by forest grazing, and by biomass stock change, their sum representing the net ecosystem productivity (NEP). Nationally, the total forest NEP increased for most of the 20th century, while fire, harvest and grazing reduced total forest stocks on average by 14%, 51%, and 6%, respectively, resulting in a net increase in C stock density of nearly 40%. Recovery from past land-use, plus reductions in wildfires and forest grazing coincide with consistent forest regrowth in the eastern U.S. but associated C stock increases were offset by increased wood harvest. C stock changes across the western U.S. fluctuated, with fire, harvest, and other disturbances (e.g., insects, droughts) reducing stocks on average by 14%, 81%, and 7%, respectively, resulting in a net growth in C stock density of 14%. Although wildfire activities increased in recent decades, harvest was the key driver in the forest C balance in all regions for most of the observed timeframe.
The Outsized Role of Salps in Carbon Export in the Subarctic Northeast Pacific Ocean
Steinberg DK, Stamieszkin K, Maas AE, Durkin CA, Passow U, Estapa ML, Omand MM, McDonnell AMP, Karp-Boss L, Galbraith M and Siegel DA
Periodic blooms of salps (pelagic tunicates) can result in high export of organic matter, leading to an "outsized" role in the ocean's biological carbon pump (BCP). However, due to their episodic and patchy nature, salp blooms often go undetected and are rarely included in measurements or models of the BCP. We quantified salp-mediated export processes in the northeast subarctic Pacific Ocean in summer of 2018 during a bloom of . Salps migrated from 300 to 750 m during the day into the upper 100 m at night. Salp fecal pellet production comprised up to 82% of the particulate organic carbon (POC) produced as fecal pellets by the entire epipelagic zooplankton community. Rapid sinking velocities of salp pellets (400-1,200 m d) and low microbial respiration rates on pellets (<1% of pellet C respired day) led to high salp pellet POC export from the euphotic zone-up to 48% of total sinking POC across the 100 m depth horizon. Salp active transport of carbon by diel vertical migration and carbon export from sinking salp carcasses was usually <10% of the total sinking POC flux. Salp-mediated export markedly increased BCP efficiency, increasing by 1.5-fold the proportion of net primary production exported as POC across the base of the euphotic zone and by 2.6-fold the proportion of this POC flux persisting 100 m below the euphotic zone. Salps have unique and important effects on ocean biogeochemistry and, especially in low flux settings, can dramatically increase BCP efficiency and thus carbon sequestration.
Manganese Limitation of Phytoplankton Physiology and Productivity in the Southern Ocean
Hawco NJ, Tagliabue A and Twining BS
Although iron and light are understood to regulate the Southern Ocean biological carbon pump, observations have also indicated a possible role for manganese. Low concentrations in Southern Ocean surface waters suggest manganese limitation is possible, but its spatial extent remains poorly constrained and direct manganese limitation of the marine carbon cycle has been neglected by ocean models. Here, using available observations, we develop a new global biogeochemical model and find that phytoplankton in over half of the Southern Ocean cannot attain maximal growth rates because of manganese deficiency. Manganese limitation is most extensive in austral spring and depends on phytoplankton traits related to the size of photosynthetic antennae and the inhibition of manganese uptake by high zinc concentrations in Antarctic waters. Importantly, manganese limitation expands under the increased iron supply of past glacial periods, reducing the response of the biological carbon pump. Overall, these model experiments describe a mosaic of controls on Southern Ocean productivity that emerge from the interplay of light, iron, manganese and zinc, shaping the evolution of Antarctic phytoplankton since the opening of the Drake Passage.
Benthic Dissolved Silicon and Iron Cycling at Glaciated Patagonian Fjord Heads
Ng HC, Hawkings JR, Bertrand S, Summers BA, Sieber M, Conway TM, Freitas FS, Ward JPJ, Pryer HV, Wadham JL, Arndt S and Hendry KR
Glacier meltwater supplies silicon (Si) and iron (Fe) sourced from weathered bedrock to downstream ecosystems. However, the extent to which these nutrients reach the ocean is regulated by the nature of the benthic cycling of dissolved Si and Fe within fjord systems, given the rapid deposition of reactive particulate fractions at fjord heads. Here, we examine the benthic cycling of the two nutrients at four Patagonian fjord heads through geochemical analyses of sediment pore waters, including Si and Fe isotopes (δSi and δFe), and reaction-transport modeling for Si. A high diffusive flux of dissolved Fe from the fjord sediments (up to 0.02 mmol m day) compared to open ocean sediments (typically <0.001 mmol m day) is supported by both reductive and non-reductive dissolution of glacially-sourced reactive Fe phases, as reflected by the range of pore water δFe (-2.7 to +0.8‰). In contrast, the diffusive flux of dissolved Si from the fjord sediments (0.02-0.05 mmol m day) is relatively low (typical ocean values are >0.1 mmol m day). High pore water δSi (up to +3.3‰) observed near the Fe(II)-Fe(III) redox boundary is likely associated with the removal of dissolved Si by Fe(III) mineral phases, which, together with high sedimentation rates, contribute to the low diffusive flux of Si at the sampled sites. Our results suggest that early diagenesis promotes the release of dissolved Fe, yet suppresses the release of dissolved Si at glaciated fjord heads, which has significant implications for understanding the downstream transport of these nutrients along fjord systems.
Mineral Soils Are an Important Intermediate Storage Pool of Black Carbon in Fennoscandian Boreal Forests
Eckdahl JA, Rodriguez PC, Kristensen JA, Metcalfe DB and Ljung K
Approximately 40% of earth's carbon (C) stored in land vegetation and soil is within the boreal region. This large C pool is subjected to substantial removals and transformations during periodic wildfire. Fire-altered C, commonly known as pyrogenic carbon (PyC), plays a significant role in forest ecosystem functioning and composes a considerable fraction of C transport to limnic and oceanic sediments. While PyC stores are beginning to be quantified globally, knowledge is lacking regarding the drivers of their production and transport across ecosystems. This study used the chemo-thermal oxidation at 375°C (CTO-375) method to isolate a particularly refractory subset of PyC compounds, here called black carbon (BC), finding an average increase of 11.6 g BC m at 1 year postfire in 50 separate wildfires occurring in Sweden during 2018. These increases could not be linked to proposed drivers, however BC storage in 50 additional nearby unburnt soils related strongly to soil mass while its proportion of the larger C pool related negatively to soil C:N. Fire approximately doubled BC stocks in the mineral layer but had no significant effect on BC in the organic layer where it was likely produced. Suppressed decomposition rates and low heating during fire in mineral subsoil relative to upper layers suggests potential removals of the doubled mineral layer BC are more likely transported out of the soil system than degraded in situ. Therefore, mineral soils are suggested to be an important storage pool for BC that can buffer short-term (production in fire) and long-term (cross-ecosystem transport) BC cycling.
Understanding the Role of Terrestrial and Marine Carbon in the Mid-Latitude Fjords of Scotland
Smeaton C and Austin WEN
The sediments within fjords are critical components of the mid- to high-latitude coastal carbon (C) cycle, trapping and storing more organic carbon (OC) per unit area than other marine sedimentary environments. Located at the land-ocean transition, fjord sediments receive OC from both marine and terrestrial environments; globally, it has been estimated that 55%-62% of the OC held within modern fjord sediments originates from terrestrial environments. However, the mid-latitude fjords of the Northern Hemisphere have largely been omitted from these global compilations. Here we investigate the mechanism driving the distribution of OC originating from different sources within the sediments of 38 Scottish fjords. From an array of fjord characteristics, the tidal range and outer sill depth were identified as the main drivers governing the proportions of marine and terrestrial OC in the sediments. Utilizing this relationship, we estimate that on average 52% ± 10% of the OC held within the sediments of all Scotland's fjords is terrestrial in origin. These findings show that the Scottish fjords hold equivalent quantities of terrestrial OC as other global fjord systems. However, the analysis also highlights that the sediments within 29% of Scottish fjords are dominated by marine derived OC, which is driven by local fjord geomorphology and oceanography.
Quantifying Northern High Latitude Gross Primary Productivity (GPP) Using Carbonyl Sulfide (OCS)
Kuai L, Parazoo NC, Shi M, Miller CE, Baker I, Bloom AA, Bowman K, Lee M, Zeng ZC, Commane R, Montzka SA, Berry J, Sweeney C, Miller JB and Yung YL
The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.
The Deep Ocean's Carbon Exhaust
Chen H, Haumann FA, Talley LD, Johnson KS and Sarmiento JL
The deep ocean releases large amounts of old, pre-industrial carbon dioxide (CO) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO release is relevant to the global climate because its changes could alter atmospheric CO levels on long time scales, and also affects the present-day potential of the Southern Ocean to take up anthropogenic CO. Here, year-round profiling float measurements show that this CO release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea-ice edge. This band of high CO subsurface water coincides with the outcropping of the 27.8 kg m isoneutral density surface that characterizes Indo-Pacific Deep Water (IPDW). It has a potential partial pressure of CO exceeding current atmospheric CO levels (∆PCO) by 175 ± 32 μatm. Ship-based measurements reveal that IPDW exhibits a distinct ∆PCO maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO decreases. Most of this vertical ∆PCO decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO outgassing from the high-carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.
Biogeographical Classification of the Global Ocean From BGC-Argo Floats
Bock N, Cornec M, Claustre H and Duhamel S
Biogeographical classifications of the global ocean generalize spatiotemporal trends in species or biomass distributions across discrete ocean biomes or provinces. These classifications are generally based on a combination of remote-sensed proxies of phytoplankton biomass and global climatologies of biogeochemical or physical parameters. However, these approaches are limited in their capacity to account for subsurface variability in these parameters. The deployment of autonomous profiling floats in the Biogeochemical Argo network over the last decade has greatly increased global coverage of subsurface measurements of bio-optical proxies for phytoplankton biomass and physiology. In this study, we used empirical orthogonal function analysis to identify the main components of variability in a global data set of 422 annual time series of Chlorophyll fluorescence and optical backscatter profiles. Applying cluster analysis to these results, we identified six biomes within the global ocean: two high-latitude biomes capturing summer bloom dynamics in the North Atlantic and Southern Ocean and four mid- and low-latitude biomes characterized by variability in the depth and frequency of deep chlorophyll maximum formation. We report the distribution of these biomes along with associated trends in biogeochemical and physicochemical environmental parameters. Our results demonstrate light and nutrients to explain most variability in phytoplankton distributions for all biomes, while highlighting a global inverse relationship between particle stocks in the euphotic zone and transfer efficiency into the mesopelagic zone. In addition to partitioning seasonal variability in vertical phytoplankton distributions at the global scale, our results provide a potentially novel biogeographical classification of the global ocean.
Attribution of Space-Time Variability in Global-Ocean Dissolved Inorganic Carbon
Carroll D, Menemenlis D, Dutkiewicz S, Lauderdale JM, Adkins JF, Bowman KW, Brix H, Fenty I, Gierach MM, Hill C, Jahn O, Landschützer P, Manizza M, Mazloff MR, Miller CE, Schimel DS, Verdy A, Whitt DB and Zhang H
The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO flux, and biological processes have modulated the ocean sink for 1995-2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year) primarily tracks the anthropogenic CO growth rate, with biological processes providing a small contribution of 2% (1.4 Pg C). In the upper 100 m, which stores roughly 13% (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year) and biological processes are the largest loss (8.6 Pg C year). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997-1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink.
Toward a Global Model for Soil Inorganic Phosphorus Dynamics: Dependence of Exchange Kinetics and Soil Bioavailability on Soil Physicochemical Properties
Wang YP, Huang Y, Augusto L, Goll DS, Helfenstein J and Hou E
The representation of phosphorus (P) cycling in global land models remains quite simplistic, particularly on soil inorganic phosphorus. For example, sorption and desorption remain unresolved and their dependence on soil physical and chemical properties is ignored. Empirical parameter values are usually based on expert knowledge or data from few sites with debatable global representativeness in most global land models. To overcome these issues, we compiled from data of inorganic soil P fractions and calculated the fraction of added P remaining in soil solution over time of 147 soil samples to optimize three parameters in a model of soil inorganic P dynamics. The calibrated model performed well (  > 0.7 for 122 soil samples). Model parameters vary by several orders of magnitude, and correlate with soil P fractions of different inorganic pools, soil organic carbon and oxalate extractable metal oxide concentrations among the soil samples. The modeled bioavailability of soil P depends on, not only, the desorption rates of labile and sorbed pool, inorganic phosphorus fractions, the slope of P sorbed against solution P concentration, but also on the ability of biological uptake to deplete solution P concentration and the time scale. The model together with the empirical relationships of model parameters on soil properties can be used to quantify bioavailability of soil inorganic P on various timescale especially when coupled within global land models.
Influence of Seasonal Variability in Flux Attenuation on Global Organic Carbon Fluxes and Nutrient Distributions
de Melo Viríssimo F, Martin AP and Henson SA
The biological carbon pump is a key component of the marine carbon cycle. This surface-to-deep flux of carbon is usually assumed to follow a simple power law function, which imposes that the surface export flux is attenuated throughout subsurface waters at a rate dictated by the parameterization exponent. This flux attenuation exponent is widely assumed as constant. However, there is increasing evidence that the flux attenuation varies both spatially and seasonally. While the former has received some attention, the consequences of the latter have not been explored. Here we aim to fill the gap with a theoretical study of how seasonal changes in both flux attenuation and sinking speed affect nutrient distributions and carbon fluxes. Using a global ocean-biogeochemical model that represents detritus explicitly, we look at different scenarios for how these varies seasonally, particularly the relative "phase" with respect to solar radiation and the "strength" of seasonality. We show that the sole presence of seasonality in the model-imposed flux attenuation and sinking speed leads to a greater transfer efficiency compared to the non-seasonal flux attenuation scenario, resulting in an increase of over 140% in some cases when the amplitude of the seasonality imposed is 60% of the non-seasonal base value. This work highlights the importance of the feedback taking place between the seasonally varying flux attenuation, sinking speed and other processes, suggesting that the assumption of constant-in-time flux attenuation and sinking speed might underestimate how much carbon is sequestered by the biological carbon pump.
A Visual Tour of Carbon Export by Sinking Particles
Durkin CA, Buesseler KO, Cetinić I, Estapa ML, Kelly RP and Omand M
To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
Negligible Quantities of Particulate Low-Temperature Pyrogenic Carbon Reach the Atlantic Ocean via the Amazon River
Häggi C, Hopmans EC, Schefuß E, Sawakuchi AO, Schreuder LT, Bertassoli DJ, Chiessi CM, Mulitza S, Sawakuchi HO, Baker PA and Schouten S
Particulate pyrogenic carbon (PyC) transported by rivers and aerosols, and deposited in marine sediments, is an important part of the carbon cycle. The chemical composition of PyC is temperature dependent and levoglucosan is a source-specific burning marker used to trace low-temperature PyC. Levoglucosan associated to particulate material has been shown to be preserved during riverine transport and marine deposition in high- and mid-latitudes, but it is yet unknown if this is also the case for (sub)tropical areas, where 90% of global PyC is produced. Here, we investigate transport and deposition of levoglucosan in suspended and riverbed sediments from the Amazon River system and adjacent marine deposition areas. We show that the Amazon River exports negligible amounts of levoglucosan and that concentrations in sediments from the main Amazon tributaries are not related to long-term mean catchment-wide fire activity. Levoglucosan concentrations in marine sediments offshore the Amazon Estuary are positively correlated to total organic content regardless of terrestrial or marine origin, supporting the notion that association of suspended or dissolved PyC to biogenic particles is critical in the preservation of PyC. We estimate that 0.5-10 × 10 g yr of levoglucosan is exported by the Amazon River. This represents only 0.5-10 ppm of the total exported PyC and thereby an insignificant fraction, indicating that riverine derived levoglucosan and low-temperature PyC in the tropics are almost completely degraded before deposition. Hence, we suggest caution in using levoglucosan as tracer for past fire activity in tropical settings near rivers.
Probing the Bioavailability of Dissolved Iron to Marine Eukaryotic Phytoplankton Using In Situ Single Cell Iron Quotas
Shaked Y, Twining BS, Tagliabue A and Maldonado MT
We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (k) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high-affinity Fe uptake system, so data were screened, yielding 560 single cell values from 31 low-Fe stations. We normalized to cell surface area (S.A.) to account for cell-size differences. The resulting bioavailability proxy ( /S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe-siderophore complexes and often approaches that of highly available inorganic Fe'. Station averaged /S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency of /S.A. among stations (ca. five-fold variation), we computed a grand-averaged dFe availability, which upon normalization to cell carbon (C) yields /C of 42,200 ± 11,000 L mol C d. We utilize /C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability of /C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe-limited Equatorial Pacific.