Current Opinion in Chemical Engineering

Editorial overview: Per- and polyfluoroalkyl substances
Nadagouda MN
The key to maximizing the benefits of antimicrobial and self-cleaning coatings is to fully determine their risks
Fu H and Gray KA
Antimicrobial and self-cleaning nanomaterial coatings have attracted significant research attention in recent years due to the growing global threat of infectious diseases, the emergence of new diseases such as COVID-19, and increases in healthcare-associated infections. Although there are many reportedly successful coating technologies, the evaluation of antimicrobial performance is primarily conducted under simple laboratory conditions without adequate testing under real environmental conditions that reflect practical use and more importantly, reveal unintended outcomes. Furthermore, there is no standardized evaluation methodology to assess the long-term stability or the consequences associated with coating deterioration, such as the ecological impacts of nanomaterials or the proliferation of antibiotic-resistant bacteria/genes. In this review, we propose a precautionary framework that integrates a rigorous assessment of potential risks and limitations of nanomaterial coatings for antimicrobial applications as intrinsic to a comprehensive evaluation of their benefits. In addition, we summarize some emerging coating technologies as promising strategies to minimize unintended risks and enhance performance.
Resilience and efficiency for the nanotechnology supply chains underpinning COVID-19 vaccine development
Golan MS, Mahoney E, Trump B and Linkov I
Nanotechnology facilitated the development and scalable commercialization of many SARS-CoV-2 vaccines. However, the supply chains underpinning vaccine manufacturing have demonstrated brittleness at various stages of development and distribution. Whereas such brittleness leaves the broader pharmacological supply chain vulnerable to significant and unacceptable disruption, strategies for supply chain resilience are being considered across government, academia, and industry. How such resilience is understood and parameterized, however, is contentious. Our review of the nanotechnology supply chain resilience literature, synthesized with the larger supply chain resilience literature, analyzes current trends in implementing and modeling resilience and recommendations for bridging the gap in the lack of quantitative models, consistent definitions, and trade-off analyses for nano supply chains.
A decade in review: use of data analytics within the biopharmaceutical sector
Banner M, Alosert H, Spencer C, Cheeks M, Farid SS, Thomas M and Goldrick S
There are large amounts of data generated within the biopharmaceutical sector. Traditionally, data analysis methods labelled as multivariate data analysis have been the standard statistical technique applied to interrogate these complex data sets. However, more recently there has been a surge in the utilisation of a broader set of machine learning algorithms to further exploit these data. In this article, the adoption of data analysis techniques within the biopharmaceutical sector is evaluated through a review of journal articles and patents published within the last ten years. The papers objectives are to identify the most dominant algorithms applied across different applications areas within the biopharmaceutical sector and to explore whether there is a trend between the size of the data set and the algorithm adopted.
TiO-based nanomaterials assisted photocatalytic treatment for virus inactivation: perspectives and applications
De Pasquale I, Lo Porto C, Dell'Edera M, Curri ML and Comparelli R
The COVID 19 pandemic has demonstrated the need for urgent access to measures to contain the spread of the virus and bacteria. In this frame, the use of photocatalytic nanomaterials can be a valuable alternative to chemical disinfectants without the limitation of generating polluting by-products and with the advantage of re-usability in time. Here, on the basis of up-to-date literature reports, the use of TiO-based photocatalytic nanomaterials in disinfection will be overviewed, considering the peculiar nanocatalysts assisted inactivation mechanisms. The potential of this class of photocatalysts for air, surface and water disinfection will be highlighted, critically revising the recent achievements in view of their potential in real application.
Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment
Westerhoff P, Alvarez PJJ, Kim J, Li Q, Alabastri A, Halas NJ, Villagran D, Zimmerman J and Wong MS
Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically-intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies. The last decade was marked by tremendous improvements in nanomaterial design, synthesis, characterization, and assessment of material properties. Realizing the benefits of these advances requires placing greater attention on embedding nanomaterials onto and into surfaces within reactors and applying external energy sources. This will allow nanomaterial-based processes to replace Victorian-aged, chemical intensive water treatment technologies.
From omics to Cellular mechanisms in mammalian cell factory development
Samoudi M, Masson HO, Kuo CC, Robinson CM and Lewis NE
Mammalian cells have been used widely as biopharmaceutical cell factories due to their ability to make complex biotherapeutic proteins with human-compatible modifications. However, their application for some products has been hampered by low protein yields. Numerous studies have aimed to characterize cellular bottlenecks in the hope of boosting protein productivity, but the complexity of the underlying pathways and the diversity of the modifications have complicated cell engineering when relying solely on traditional methodologies. Incorporating omics-based and systems approaches into cell engineering can provide valuable insights into desirable phenotypes of cell factories. Here, we discuss cell engineering strategies for enhancing protein productivity in mammalian cell factories, particularly CHO and HEK293, and the opportunities and limitations of the genome-wide screening and multi-omics approaches for guiding cell engineering. Systems biology strategies will also be discussed to show how they refine our understanding of the cellular mechanisms which will aid in effective engineering strategies.
NANOTECHNOLOGY-MEDIATED THERAPEUTIC STRATEGIES AGAINST SYNUCLEINOPATHIES IN NEURODEGENERATIVE DISEASE
Schlichtmann BW, Hepker M, Palanisamy BN, John M, Anantharam V, Kanthasamy AG, Narasimhan B and Mallapragada SK
Synucleinopathies are a subset of debilitating neurodegenerative disorders for which clinically approved therapeutic options to either halt or retard disease progression are currently unavailable. Multiple synergistic pathological mechanisms in combination with the characteristic misfolding of proteins are attributable to disease pathogenesis and progression. This complex interplay, as well as the difficult and multiscale nature of therapeutic delivery into the central nervous system, make finding effective treatments difficult. Nanocarriers (NCs) are a class of materials that can significantly improve therapeutic brain delivery and enable multifunctional therapies. In this review, an update on the known pathology of synucleinopathies is presented. Then, NC-enabled therapeutics designed to target the multiple mechanisms by combination therapies and multiscale targeting methods is reviewed. The implications of these strategies are synthesized and evaluated to suggest opportunities for the rational design of anti-neurodegenerative NC therapeutics.
Caveolae-Mediated Transport at the Injured Blood-Brain Barrier as an Underexplored Pathway for Central Nervous System Drug Delivery
Sorets AG, Rosch JC, Duvall CL and Lippmann ES
Drug delivery to the central nervous system (CNS) is generally hindered by the selectivity of the blood-brain barrier (BBB). However, there is strong evidence that the integrity of the BBB is compromised under certain pathological conditions, potentially providing a window to deliver drugs to injured brain regions. Recent studies suggest that caveolae-mediated transcytosis, a transport pathway suppressed in the healthy BBB, becomes elevated as an immediate response to ischemic stroke and at early stages of aging, where it may precede irreversible neurological damage. This article reviews early-stage caveolar transcytosis as a novel and promising drug delivery opportunity. We propose that albumin-binding and nanoparticle approaches have the potential to leverage this window of transcellular BBB disruption for trafficking therapeutic agents into the CNS.
A piece of the pie: engineering microbiomes by exploiting division of labor in complex polysaccharide consumption
Lindemann SR
Although microbes competing for simple substrates are well-known to obey the ecological competitive exclusion principle, little is known regarding how complex substrates influence the ecology of microbial communities. The vast structural diversity of polysaccharides makes them ideal substrates for cooperative microbial degradation. Potential mechanisms for division of metabolic labor in microbial communities consuming polysaccharides are 1) complementary differences in gene content, 2) alternate regulation of polysaccharide degradation genes, 3) subtle differences in hydrolytic enzyme functionality, and 4) specialization in transport and consumption of hydrolysis products. Engineering division of labor in polysaccharide degradation using these mechanisms as control points may improve our ability to engineer microbiomes for improved productivity and stability in diverse environments.
Cell culture bioprocessing - the road taken and the path forward
O'Brien SA and Hu WS
Cell culture processes are used to produce the vast majority of protein therapeutics, valued at over US$180 billion per annum worldwide. For more than a decade now, these processes have become highly productive. To further enhance capital efficiency, there has been an increase in the adoption of disposable apparatus and continuous processing, as well as a greater exploration of in-line sensing, various -omic tools, and cell engineering to enhance process controllability and product quality consistency. These feats in cell culture processing for protein biologics will help accelerate the bioprocess advancements for virus and cell therapy applications.
Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications
Shah RA, Frazar EM and Hilt JZ
Bionanotechnology is an ever-expanding field as innovations in nanotechnology continue to be developed based on biological systems or to be applied to address unmet needs in biology, biomedicine, ., including various sensor and drug delivery solutions. Amidst the wide range of bionanomaterials that have been developed, stimuli responsive bionanomaterials are of particular interest and are thus emphasized within this review. Here, we have highlighted the most recent advances for stimuli responsive bionanomaterials with focus on those possessing responses based on activation, expansion/contraction and self-assembly/disassembly. The aim of this review is to bring attention to some of the most current bionanotechnology research and the interesting applications within this field.
Models of the Blood-Brain Barrier: Building in physiological complexity
Katt ME and Shusta EV
Development of brain therapeutics is significantly hampered by the presence of the blood-brain barrier (BBB). Classical transwell models are able to recapitulate many important aspects of drug transport across the BBB, but are not completely predictive of brain uptake. Species differences further complicate translation of experimental therapeutics from the benchtop to the clinic. Human BBB models offer some solutions to this problem, and by increasing device complexity both in terms of multicellularity, flow and physical architecture, physiological models of the BBB have been developed that can more faithfully model different aspects of transport and homeostasis BBB. Using these models, it may be possible to improve the predictive capacity in benchmarking candidate therapeutics, and to identify new druggable targets by studying multicellular interactions.
Governing Transport Principles for Nanotherapeutic Application in the Brain
Helmbrecht H, Joseph A, McKenna M, Zhang M and Nance E
Neurological diseases account for a significant portion of the global disease burden. While research efforts have identified potential drugs or drug targets for neurological diseases, most therapeutic platforms are still ineffective at reaching the target location selectively and with high yield. Restricted transport, including passage across the blood-brain barrier, through the brain parenchyma, and into specific cells, is a major cause of ineffective therapeutic delivery. However, nanotechnology is a promising, tailorable platform for overcoming these transport barriers and improving therapeutic delivery to the brain. We provide a transport-oriented analysis of nanotechnology's ability to navigate these transport barriers in the brain. We also provide an opinion on the need for technology development for increasing our capacity to characterize and quantify nanoparticle passage through each transport barrier. Finally, we highlight the importance of incorporating the effect of disease, metabolic state, and regional dependencies to better understand transport of nanotherapeutics in the brain.
Recent Developments in Metal Additive Manufacturing
Bandyopadhyay A, Zhang Y and Bose S
Additive manufacturing (AM) or 3D printing has revolutionized the modern metal manufacturing industry. AM technology allows for fabrication of highly customized 3D objects where both shape and composition can be tailored. Compared to traditional methods, metal AM technology has advantages in saving time and cost. Recent developments in metal AM systems include upgrades in energy source and part resolution, which leads to better part quality and improved reliability. This brief review article summarizes recent developments in metal AM technologies as well as the current challenges and future trends.
Editorial overview: Recent developments in additive manufacturing
Nadagouda MN, Sekhar JA and Kyu T
SUSTAINABILITY INDICATORS FOR END-OF-LIFE CHEMICAL RELEASES AND POTENTIAL EXPOSURE
Hernandez-Betancur JD and Ruiz-Mercado GJ
Understanding the chemical risk to environment and human health is an important issue when a waste management strategy and a control risk system is analyzed and selected. This is even more important at the end-of-life (recycling, recovery and disposal) scenario for a chemical due to the uncertainty in respect of the most susceptible receptors (e.g., workers), pathways (e.g., groundwater), routes (e.g., inhalation) and hazard (e.g., cancer) associated to a chemical exposure. Hence, selecting a group of sustainability performance indicators for estimating the chemical risk when evaluating end-of-life scenarios is a crucial task. Therefore, this manuscript focuses on a critical analysis of the sustainability indicators taxonomy which are used to assess chemical risk to the environment and human health during end-of-life scenarios. The insights from performing an extensive literature search in the largest database of peer-reviewed literature provide that chemical intake, hazard quotient, hazard index, and carcinogenic risk have been the most commonly used for human health chemical risk. In addition, previous research has been less focused on environment chemical risk, with ecological risk index being the most widely used indicator for. The most employed human health chemical risk sustainability indicators are part of a methodology suggested by U.S. Environmental Protection Agency for chemical risk assessment.
Hybrid hydrogels for biomedical applications
Palmese LL, Thapa RK, Sullivan MO and Kiick KL
The use of hydrogels in biomedical applications dates back multiple decades, and the engineering potential of these materials continues to grow with discoveries in chemistry and biology. The approaches have led to increasing complex hydrogels that incorporate both synthetic and natural polymers and functional domains for tunable release kinetics, mediated cell response, and ultimately use in clinical and research applications in biomedical practice. This review focuses on recent advances in hybrid hydrogels that incorporate nano/microstructures, their synthesis, and applications in biomedical research. Examples discussed include the implementation of click reactions, photopatterning, and 3D printing for the facile production of these hybrid hydrogels, the use of biological molecules and motifs to promote a desired cellular outcome, and the tailoring of kinetic and transport behavior through hybrid-hydrogel engineering to achieve desired biomedical outcomes. Recent progress in the field has established promising approaches for the development of biologically relevant hybrid hydrogel materials with potential applications in drug discovery, drug/gene delivery, and regenerative medicine.
Simulation methods for liquid-liquid phase separation of disordered proteins
Dignon GL, Zheng W and Mittal J
Liquid-liquid phase separation of intrinsically disordered proteins (IDPs) and other biomolecules is a highly complex but robust process used by living systems. Drawing inspiration from biology, phase separating proteins have been successfully utilized for promising applications in fields of materials design and drug delivery. These protein-based materials are advantageous due to the ability to finely tune their stimulus-responsive phase behavior and material properties, and the ability to encode biologically active motifs directly into the sequence. The number of possible protein sequences is virtually endless, which makes sequence-based design a rather daunting task, but also attractive due to the amount of control coming from exploration of this variable space. The use of computational methods in this field of research have come to the aid in several aspects, including interpreting experimental results, identifying important structural features and molecular mechanisms capable of explaining the phase behavior, and ultimately providing predictive frameworks for rational design of protein sequences. Here we provide an overview of computational studies focused on phase separating biomolecules and the tools that are available to researchers interested in this topic.
Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering
Hamaker NK and Lee KH
Chinese hamster ovary (CHO) cells are widely used for the production of therapeutic proteins. Customarily, CHO production cell lines are established through random integration, which requires laborious screening of many clones to isolate suitable producers. In contrast, site-specific integration (SSI) accelerates cell line development by targeting integration of transgenes to pre-validated genomic loci capable of supporting high and stable expression. To date, a relatively small number of these so called 'hot spots' have been identified, mainly through empirical methods. Nevertheless, nuclease-mediated and recombinase-mediated SSI have revolutionized cell line engineering by enabling rational and reproducible transgene targeting.
A review of 3D printing techniques for environmental applications
Nadagouda MN, Ginn M and Rastogi V
With a wide variety of techniques and compatible materials, three-dimensional (3D) printing is becoming increasingly useful in environmental applications in air, water, and energy. Through the advantages of quick production, cost-effectiveness, customizable design, the ability to produce complex geometries, and more, 3D printing has supported improvements to air quality monitors, filters, membranes, separation devices for water treatment, microbial fuel cells, solar cells, and wind turbines. It also supports sustainable manufacturing through reduced material waste, energy use, and carbon emissions. Applications of 3D printing within four environmental disciplines are described in this article: sustainable manufacturing, air quality, water and wastewater, and alternative energy sources.