BIOGEOCHEMISTRY

Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon
Mander Ü, Espenberg M, Melling L and Kull A
Peatlands play a crucial role in the global carbon (C) cycle, making their restoration a key strategy for mitigating greenhouse gas (GHG) emissions and retaining C. This study analyses the most common restoration pathways employed in boreal and temperate peatlands, potentially applicable in tropical peat swamp forests. Our analysis focuses on the GHG emissions and C retention potential of the restoration measures. To assess the C stock change in restored (rewetted) peatlands and afforested peatlands with continuous drainage, we adopt a conceptual approach that considers short-term C capture (GHG exchange between the atmosphere and the peatland ecosystem) and long-term C sequestration in peat. The primary criterion of our conceptual model is the capacity of restoration measures to capture C and reduce GHG emissions. Our findings indicate that carbon dioxide (CO) is the most influential part of long-term climate impact of restored peatlands, whereas moderate methane (CH) emissions and low NO fluxes are relatively unimportant. However, lateral losses of dissolved and particulate C in water can account up to a half of the total C stock change. Among the restored peatland types, Sphagnum paludiculture showed the highest CO capture, followed by shallow lakes and reed/grass paludiculture. Shallow lakeshore vegetation in restored peatlands can reduce CO emissions and sequester C but still emit CH, particularly during the first 20 years after restoration. Our conceptual modelling approach reveals that over a 300-year period, under stable climate conditions, drained bog forests can lose up to 50% of initial C content. In managed (regularly harvested) and continuously drained peatland forests, C accumulation in biomass and litter input does not compensate C losses from peat. In contrast, rewetted unmanaged peatland forests are turning into a persistent C sink. The modelling results emphasized the importance of long-term C balance analysis which considers soil C accumulation, moving beyond the short-term C cycling between vegetation and the atmosphere.
Global observation gaps of peatland greenhouse gas balances: needs and obstacles
Zhao J, Weldon S, Barthelmes A, Swails E, Hergoualc'h K, Mander Ü, Qiu C, Connolly J, Silver WL and Campbell DI
Greenhouse gas (GHGs) emissions from peatlands contribute significantly to ongoing climate change because of human land use. To develop reliable and comprehensive estimates and predictions of GHG emissions from peatlands, it is necessary to have GHG observations, including carbon dioxide (CO), methane (CH) and nitrous oxide (NO), that cover different peatland types globally. We synthesize published peatland studies with field GHG flux measurements to identify gaps in observations and suggest directions for future research. Although GHG flux measurements have been conducted at numerous sites globally, substantial gaps remain in current observations, encompassing various peatland types, regions and GHGs. Generally, there is a pressing need for additional GHG observations in Africa, Latin America and the Caribbean regions. Despite widespread measurements of CO and CH, studies quantifying NO emissions from peatlands are scarce, particularly in natural ecosystems. To expand the global coverage of peatland data, it is crucial to conduct more eddy covariance observations for long-term monitoring. Automated chambers are preferable for plot-scale observations to produce high temporal resolution data; however, traditional field campaigns with manual chamber measurements remain necessary, particularly in remote areas. To ensure that the data can be further used for modeling purposes, we suggest that chamber campaigns should be conducted at least monthly for a minimum duration of one year with no fewer than three replicates and measure key environmental variables. In addition, further studies are needed in restored peatlands, focusing on identifying the most effective restoration approaches for different ecosystem types, conditions, climates, and land use histories.
Factors influencing seasonal chemistry patterns in Virginia mountain streams
Riscassi AL, Scanlon TM and Galloway JN
The relative influence of seasonal patterns in hydrological flow and seasonal differences in biological and geochemical activity on stream chemistry patterns is difficult to discern because they covary; temperate systems are characterized by lower mean flow in the summer (i.e. corresponding to deeper flow paths, elevated temperature, and biological activity), and higher mean flow in the winter (i.e. corresponding to shallower flow paths, depressed temperature, and biological dormancy). Using 2018 data, when seasonal stream flow conditions reversed, and two prior conventional water years, the relationship between monthly acid-relevant analyte concentrations and streamflow were compared within and between winter and summer to provide insight into controls on characteristic seasonal chemistry patterns at two mid-Appalachian sites with distinct geology (weatherable mafic and weather resistant siliciclastic). Acid neutralizing capacity (ANC) increased (1) with lower flow, in both seasons and (2) in summer, for all flow conditions. The compounding impacts resulted in a doubling of concentration from typical winter with high flow to summer with low flow at both sites. Base cation patterns tracked ANC at the mafic site, resulting in an ~ 60% increase of from winter with high flow to summer with low flow; distinctions between summer and winter contributed more to the seasonal pattern (72%) than changes in flow. Sulfate increased at the mafic site (1) with higher flow, in both seasons and (2) in winter, for all flow conditions, resulting in an ~ 50% increase from summer with low flow to winter with high flow; distinctions between winter and summer conditions and flow contributed similarly (40-60%) to the typical seasonal chemical pattern. The biogeochemical mechanism driving differences in stream chemistry between summer and winter for the same flow conditions is likely increased rates of natural acidification from elevated soil respiration in summer, resulting in greater bedrock weathering and sulfate adsorption. Findings highlight the significance and consistency of growing vs dormant season variations in temperature and biological activity in driving intra-annual patterns of stream solutes. This data set informs parameterization of hydro-biogeochemical models of stream chemistry in a changing climate at a biologically relevant, seasonal, timescale.
Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology
Gios E, Verbruggen E, Audet J, Burns R, Butterbach-Bahl K, Espenberg M, Fritz C, Glatzel S, Jurasinski G, Larmola T, Mander Ü, Nielsen C, Rodriguez AF, Scheer C, Zak D and Silvennoinen HM
Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies.
Biogeochemical properties of blue carbon sediments influence the distribution and monomer composition of bacterial polyhydroxyalkanoates (PHA)
Grey A, Costeira R, Lorenzo E, O'Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR and Kelleher BP
Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments.
Ocean surface waves impact on global air-sea CO flux
Wu L, Cai Y and Rutgersson A
Ocean surface gravity waves facilitate gas exchanges primarily in two ways: (1) the formation of bubbles during wave breaking increases the surface area available for gas exchange, promoting CO transfer, and (2) wave-current interaction processes alter the sea surface partial pressure of CO and gas solubility, consequently affecting the CO flux. This study tests these influences using a global ocean-ice-biogeochemistry model under preindustrial conditions. The simulation results indicate that both wave-current interaction processes and the sea-state-dependent gas transfer scheme-which explicitly accounts for bubble-mediated gas transfer velocity-influence the air-sea CO flux, with substantial spatial and seasonal variations. In the equatorial region (10 S-10 N), both processes enhance the CO outgassing flux, with comparable magnitudes (more than 10% on average). However, in the region between approximately 10 and 35 , the impact of ocean surface waves on the air-sea CO flux via the sea-state-dependent gas transfer velocity is greater than that of the wave-current interaction processes, with opposing directions of influence. During winter, the sea-state-dependent gas transfer velocity enhances the CO uptake flux, while in the summer season, it increases the CO outgassing flux. In regions poleward of 35 , the impact of wave-current interaction processes on CO exchange dominates over that of the sea-state-dependent gas transfer velocity. It is worth noting that the impact of wave-current interaction processes on air-sea CO flux is primarily driven by changes in the ratio between the concentrations of dissolved inorganic carbon and total alkalinity, with variations in sea surface temperature exerting an opposite influence on pCO , albeit with a smaller magnitude. Overall, wave-related processes should be considered in Earth System Models to better model the carbon cycle.
Do coastal salt mudflats (sabkhas) contribute to the blue carbon sequestration?
Elsayed H, Al Disi ZA, Naja K, Strakhov I, Mundle SOC, Al-Kuwari HAS, Sadooni F, Diloreto Z, Al-Khayat JAA and Dittrich M
Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem. The arguments often lack data on a critical contributor, inorganic carbon in the form of carbonates, which can drive the net carbon exchange with the atmosphere. In this study we inventory organic and inorganic carbon retention capacity in two contrasting sabkhas of the Qatar Peninsula: carbonaceous Dohat Faishakh and siliciclastic Khor Al-Adaid. Despite the differences in organic carbon stock between the two sabkhas, the Dohat Faishakh sabkha has higher (37.17 ± 0.81 Mg C ha) than it is in the Khor Al-Adaid sabkha (13.75 ± 0.38 Mg C ha) for 0. 44 m sediment depth, the organic carbon retained in sabkhas is similar to those reported for mangroves and salt marshes. Notably, calculated CO net sequestration indicated that both sabkhas evade CO into the atmosphere. Thus, carbonate formation negated organic carbon accumulation in carbonaceous sabkha. Consequently, for proper evaluation of sabkhas as a blue carbon ecosystem, an inorganic carbon analysis, especially of carbonate formation, is inevitable. Considering only organic carbon stock may ay overestimate carbon sequestration capacity.
Dissolved organic matter transformations in a freshwater rivermouth
Pearce NJT, Larson JH, Evans MA, Bailey SW, Frost PC, James WF and Xenopoulos MA
River-to-lake transitional areas are biogeochemically active ecosystems that can alter the amount and composition of dissolved organic matter (DOM) as it moves through the aquatic continuum. However, few studies have directly measured carbon processing and assessed the carbon budget of freshwater rivermouths. We compiled measurements of dissolved organic carbon (DOC) and DOM in several water column (light and dark) and sediment incubation experiments conducted in the mouth of the Fox river (Fox rivermouth) upstream from Green Bay, Lake Michigan. Despite variation in the direction of DOC fluxes from sediments, we found that the Fox rivermouth was a net sink of DOC where water column DOC mineralization outweighed the release of DOC from sediments at the rivermouth scale. Although we found DOM composition also changed during our experiments, alterations in DOM optical properties were largely independent of the direction of sediment DOC fluxes. We found a consistent decrease in humic-like and fulvic-like terrestrial DOM and a consistent increase in the overall microbial composition of rivermouth DOM during our incubations. Moreover, greater ambient total dissolved phosphorus concentrations were positively associated with the consumption of terrestrial humic-like, microbial protein-like, and more recently derived DOM but had no effect on bulk DOC in the water column. Unexplained variation indicates that other environmental controls and water column processes affect the processing of DOM in this rivermouth. Nonetheless, the Fox rivermouth appears capable of substantial DOM transformation with implications for the composition of DOM entering Lake Michigan.
Freshwater faces a warmer and saltier future from headwaters to coasts: climate risks, saltwater intrusion, and biogeochemical chain reactions
Kaushal SS, Shelton SA, Mayer PM, Kellmayer B, Utz RM, Reimer JE, Baljunas J, Bhide SV, Mon A, Rodriguez-Cardona BM, Grant SB, Newcomer-Johnson TA, Malin JT, Shatkay RR, Collison DC, Papageorgiou K, Escobar J, Rippy MA, Likens GE, Najjar RG, Mejia AI, Lassiter A, Li M and Chant RJ
Alongside global climate change, many freshwater ecosystems are experiencing substantial shifts in the concentrations and compositions of salt ions coming from both land and sea. We synthesize a risk framework for anticipating how climate change and increasing salt pollution coming from both land and saltwater intrusion will trigger chain reactions extending from headwaters to tidal waters. Salt ions trigger 'chain reactions,' where chemical products from one biogeochemical reaction influence subsequent reactions and ecosystem responses. Different chain reactions impact drinking water quality, ecosystems, infrastructure, and energy and food production. Risk factors for chain reactions include shifts in salinity sources due to global climate change and amplification of salinity pulses due to the interaction of precipitation variability and human activities. Depending on climate and other factors, salt retention can range from 2 to 90% across watersheds globally. Salt retained in ecosystems interacts with many global biogeochemical cycles along flowpaths and contributes to 'fast' and 'slow' chain reactions associated with temporary acidification and long-term alkalinization of freshwaters, impacts on nutrient cycling, CO, CH, NO, and greenhouse gases, corrosion, fouling, and scaling of infrastructure, deoxygenation, and contaminant mobilization along the freshwater-marine continuum. Salt also impacts the carbon cycle and the quantity and quality of organic matter transported from headwaters to coasts. We identify the double impact of salt pollution from land and saltwater intrusion on a wide range of ecosystem services. Our salinization risk framework is based on analyses of: (1) increasing temporal trends in salinization of tributaries and tidal freshwaters of the Chesapeake Bay and freshening of the Chesapeake Bay mainstem over 40 years due to changes in streamflow, sea level rise, and watershed salt pollution; (2) increasing long-term trends in concentrations and loads of major ions in rivers along the Eastern U.S. and increased riverine exports of major ions to coastal waters sometimes over 100-fold greater than forest reference conditions; (3) varying salt ion concentration-discharge relationships at U.S. Geological Survey (USGS) sites across the U.S.; (4) empirical relationships between specific conductance and Na, Cl, SO , Ca, Mg, K, and N at USGS sites across the U.S.; (5) changes in relationships between concentrations of dissolved organic carbon (DOC) and different salt ions at USGS sites across the U.S.; and (6) original salinization experiments demonstrating changes in organic matter composition, mobilization of nutrients and metals, acidification and alkalinization, changes in oxidation-reduction potentials, and deoxygenation in non-tidal and tidal waters. The interaction of human activities and climate change is altering sources, transport, storage, and reactivity of salt ions and chain reactions along the entire freshwater-marine continuum. Our salinization risk framework helps anticipate, prevent, and manage the growing double impact of salt ions from both land and sea on drinking water, human health, ecosystems, aquatic life, infrastructure, agriculture, and energy production.
Distribution, sources, and fate of nitrate in groundwater in agricultural areas of Southern Alberta, Canada
Plata I, Humez P, Wilson L, Nightingale M, McClain C and Mayer B
Nitrate pollution frequently impacts groundwater quality, particularly in agricultural regions across the world, but identifying the sources of nitrate (NO ) pollution remains challenging. The extensive use of nitrogen-containing fertilizers, surpassing crop requirements, and livestock management practices associated with the spreading of manure can lead to the accumulation and transport of NO into groundwater, potentially affecting drinking water sources. We investigated the occurrence and distribution of NO in groundwater in Southern Alberta, Canada, a region characterized by intensive crop cultivation and livestock industry. Over 3500 samples from a provincial-scale groundwater quality database, collated from multiple projects and sources, involving domestic wells, monitoring wells, and springs, coupled with newly obtained samples from monitoring wells provided comprehensive geochemical insights into groundwater quality. While stable isotope compositions of NO (δN and δO) were exclusively available for groundwater samples obtained from monitoring wells, the stable isotope data were instrumental in constraining NO sources and transformation processes within the aquifers of the study region. Among all samples, 49% (n = 1746) were associated with NO concentrations below the detection limits. Ten percent (n = 369) of all groundwater samples, including samples with concentrations below detection limits, exceed the Canadian drinking water maximum acceptable concentration of 10 mg/L for nitrate as nitrogen (NO -N). Elevated NO concentrations (> 10 mg/L as NO -N) in groundwater were mainly detected at shallow depths (< 30 m) predominantly in aquifers in surficial sediments and less frequently in bedrock aquifers. Statistical correlations between aqueous geochemical parameters showed positive associations between concentrations of NO -N and both potassium (K) and chloride (Cl), indicating the influence of synthetic fertilizers on groundwater quality. In addition, isotope analyses of NO (δN and δO) revealed three NO sources in groundwater, including mineralization of soil organic nitrogen followed by nitrification in soils, nitrification of ammonium or urea-based synthetic fertilizers in soils, and manure. However, manure was identified as the dominant source of NO exceeding the maximum acceptable concentration in groundwater within agriculturally dominated areas. Additionally, this multifaceted approach helped identify denitrification in some groundwater samples, a process that plays a key role in reducing NO concentrations under favorable redox conditions in shallow aquifers. The methodological approach used in this study can be applied to other regions worldwide to identify NO sources and removal processes in contaminated aquifers, provided there are well networks in place to monitor groundwater quality and drinking water sources.
Springtime soil and tree stem greenhouse gas fluxes and the related soil microbiome pattern in a drained peatland forest
Ranniku R, Kazmi FA, Espenberg M, Truupõld J, Escuer-Gatius J, Mander Ü and Soosaar K
Spring can be a critical time of year for stem and soil methane (CH), nitrous oxide (NO) and carbon dioxide (CO) emissions as soil freeze-thaw events can be hot moments of gas release. Greenhouse gas fluxes from soil, Downy birch () and Norway spruce () stems were quantified using chamber systems and gas analysers in spring 2023 in a northern drained peatland forest. Dissolved gas concentrations in birch sap and soil water, environmental parameters, soil chemistry, and functional gene abundances in the soil were determined. During spring, initially low soil and stem CH, NO, and CO emissions increased towards late April. Temperature emerged as the primary driver of soil and stem fluxes, alongside photosynthetically active radiation influencing stem fluxes. Soil hydrologic conditions had minimal short-term impact. No clear evidence linked stem CH emissions to birch sap gas concentrations, while relationships existed for CO. Functional gene abundances of the N and CH-cycles changed between measurement days. Potential for methanogenesis and complete denitrification was higher under elevated soil water content, shifting to methanotrophy and incomplete denitrification as the study progressed. However, our results highlight the need for further analysis of relationships between microbial cycles and GHG fluxes under different environmental conditions, including identifying soil microbial processes in soil layers where tree roots absorb water.
Ironing out the question: what is limiting cyanobacteria in freshwater lakes in the Prairie Pothole Region?
Creed IF, Salmon O, Erratt KJ and Trick CG
The Canadian Prairie Pothole Region is a notable hotspot for cyanobacteria-dominated lakes. This study found minor variations in cyanobacterial genera across these lakes yet observed significant differences in standing biomass, as the lakes ranged from oligotrophic to hypereutrophic classifications. A correlational analysis of nutrients, specifically total phosphorus (TP) and total nitrogen (TN) revealed that the limiting nutrients varied considerably across the region. Of the lakes studied, cyanobacterial biomass was P-limited in 21 lakes, N-limited in 3 lakes, and co-limited by both P and N in 23 lakes. Surprisingly, in 32 lakes, the biomass was limited by neither P nor N. In these lakes, iron (Fe) emerged as the most likely limiting nutrient, given a relatively narrow range of free ferric Fe (pFe) between 18 and 26. Cyanobacteria can create biomass under Fe stress by producing Fe-scavenging siderophores that target pFe. However, in neither P- nor N-limited lakes, there was a lack of correlation between siderophore concentrations and cyanobacterial biomass (r = 0.05), indicating that the siderophores were unable to scavenge Fe and thereby utilize the available P and N to produce further cyanobacterial biomass. Our findings suggest that these Fe-starved eutrophic lakes exhibited a paradox of slow-growing yet high cyanobacterial biomass, challenging the notion that only oligotrophic lakes embody slow-growing metabolisms. Overall, our study highlights the importance of considering nutrient limitations on cyanobacterial growth and incorporating macro- (P and N) and micro- (Fe) nutrient limitation considerations into existing nutrient management strategies to mitigate cyanobacterial dominance effectively.
Influence of temperature on selenium mobility under contrasting redox conditions: a sediment flow-through reactor experiment
Laberge-Carignan A, Mercier F, Larivière D and Couture RM
Selenium (Se) biogeochemistry in boreal and permafrost-rich soils and sediments remains poorly constrained, despite its importance as both an essential micronutrient and potential contaminant. As climate change accelerates warming in northern ecosystems, the mobilization of vast carbon pools may significantly alter Se cycling and bioavailability, with cascading effects on aquatic food webs. In this context, we aim to investigate how temperature and organic matter (OM) lability influence Se redox dynamics in lake sediments, providing insights for predicting its behavior as these northern ecosystems continue to warm. We studied Se sequestration as a function of OM lability, temperature (4 and 23 °C) and Se speciation in minimally disturbed lacustrine sediments using flow-through reactors (FTRs). Initial sediments contained OM characterized as either labile (fresh) or recalcitrant (aged), and were fed with environmentally relevant, low Se concentrations and filtered lake water. We monitored Se concentration as well as speciation along with pH and the concentrations of dissolved OM, NO , NO , Fe(II), SO and HS in the outflow of FTRs during 8 experimental phases. All sediments sequestered a large proportion of Se, with FTRs containing fresh OM removing 50% more Se than those containing aged OM. Along with a higher production of reduced species, such as ferrous Fe and sulfides, in the reactors with fresh OM, this result is consistent with reducing conditions promoting Se sequestration. Inflowing selenite was sequestered to a larger extent than inflowing selenate. Lastly, only selenate removal responded strongly to temperature. With an inflow concentration of 100 nM, selenate was sequestered at a rate of 92 pmol cm d at 23 °C, which decreased to 80 pmol cm d at 4 °C. In selenate removal experiments, outflow Se speciation consisted mostly of organic Se species at 23 °C and, in contrast, entirely of selenate at 4 °C. We hypothesize that selenate removal proceeded via microbial processes, consistent with temperature-dependent reactions catalyzed by enzymes. Overall, our findings suggest that the mobilization and warming of the boreal and permafrost carbon pools may increase the capacity of aquatic environments to sequester Se, lowering its bioavailability.
Association between soil organic carbon and calcium in acidic grassland soils from Point Reyes National Seashore, CA
Rowley MC, Nico PS, Bone SE, Marcus MA, Pegoraro EF, Castanha C, Kang K, Bhattacharyya A, Torn MS and Peña J
Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (Ca; 5-8.3 c.mol kg) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored.
Rapid response of moss-associated nitrogen fixation to nutrient additions in tropical montane cloud forests with different successional stages
Clasen LA, Alvarenga DO, Wang Y, Andersen RF and Rousk K
Nitrogen (N) fixation in association with mosses could be a key source of new N in tropical montane cloud forests since these forests maintain high humidity levels and stable temperatures, both of which are important to N fixation. Here, nutrient availability could be a prominent control of N fixation processes. However, the mechanisms and extent of these controls, particularly in forests at different successional stages, remains unknown to date. To address this knowledge gap, we investigated the impact of N, phosphorus (P) and molybdenum (Mo) additions on moss-associated N fixation in tropical montane cloud forests of two successional stages, an old-growth forest and an early-successional natural regrowth forest. We hypothesized that if N is available, N fixation rates would be rapidly reduced, while P and Mo would promote nitrogenase activity. Our results show that Mo additions did not affect N fixation rates, whereas N and P additions, in different doses and combinations, immediately reduced N fixation in both forests. Nonetheless, rates recovered within 1 year of nutrient additions. Nitrogen fixation rates associated with ground-covering mosses were similar in both forests. Interestingly, one year after the nutrient additions, N fixation rates across all the treatments were higher in the natural regrowth forests than the mature forests, suggesting more nutrient limitation in these regrowing forests, likely as a result of higher demand for growth. Our study highlights how moss-associated N fixation responds to changes in nutrient availability across distinct successional stages, deepening our understanding of processes that contributes to tropical montane cloud forests.
Microbial responses to soil cooling might explain increases in microbial biomass in winter
Schnecker J, Spiegel F, Li Y, Richter A, Sandén T, Spiegel H, Zechmeister-Boltenstern S and Fuchslueger L
In temperate, boreal and arctic soil systems, microbial biomass often increases during winter and decreases again in spring. This build-up and release of microbial carbon could potentially lead to a stabilization of soil carbon during winter times. Whether this increase is caused by changes in microbial physiology, in community composition, or by changed substrate allocation within microbes or communities is unclear. In a laboratory incubation study, we looked into microbial respiration and growth, as well as microbial glucose uptake and carbon resource partitioning in response to cooling. Soils taken from a temperate beech forest and temperate cropland system in October 2020, were cooled down from field temperature of 11 °C to 1 °C. We determined microbial growth using O-incorporation into DNA after the first two days of cooling and after an acclimation phase of 9 days; in addition, we traced C-labelled glucose into microbial biomass, CO respired from the soil, and into microbial phospholipid fatty acids (PLFAs). Our results show that the studied soil microbial communities responded strongly to soil cooling. The O data showed that growth and cell division were reduced when soils were cooled from 11 to 1 °C. Total respiration was also reduced but glucose uptake and glucose-derived respiration were unchanged. We found that microbes increased the investment of glucose-derived carbon in unsaturated phospholipid fatty acids at colder temperatures. Since unsaturated fatty acids retain fluidity at lower temperatures compared to saturated fatty acids, this could be interpreted as a precaution to reduced temperatures. Together with the maintained glucose uptake and reduced cell division, our findings show an immediate response of soil microorganisms to soil cooling, potentially to prepare for freezing events. The discrepancy between C uptake and cell division could explain previously observed high microbial biomass carbon in temperate soils in winter.
Climate displaces deposition as dominant driver of dissolved organic carbon concentrations in historically acidified lakes
Herreid AM, Fazekas HM, Nelson SJ, Wymore AS, Murray D, Varner RK and McDowell WH
Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s. An increased percentage of winter precipitation falling as rain was associated with elevated spring DOC concentrations, suggesting a mechanistic coupling between climate and DOC increases that will persist in coming decades as northern latitudes continue to warm. Drainage lakes situated in watersheds with fine-textured, deep soils and larger watershed areas exhibit greater variability in lake DOC concentrations compared to both seepage and drainage lakes with coarser, shallower soils, and smaller watershed areas. Capturing the spatial variability in interactions between climatic impacts and localized watershed characteristics is crucial for forecasting lentic carbon and nutrient dynamics, with implications for lake ecology and drinking water quality.
Transitions in nitrogen and organic matter form and concentration correspond to bacterial population dynamics in a hypoxic urban estuary
Humphries GE, Espinosa JI, Ambrosone M, Ayala ZR, Tzortziou M, Goes JI and Greenfield DI
Nitrogen (N) inputs to developed coastlines are linked with multiple ecosystem and socio-economic impacts worldwide such as algal blooms, habitat/resource deterioration, and hypoxia. This study investigated the microbial and biogeochemical processes associated with recurrent, seasonal bottom-water hypoxia in an urban estuary, western Long Island Sound (WLIS), that receives high N inputs. A 2-year (2020-2021) field study spanned two hypoxia events and entailed surface and bottom depth water sampling for dissolved nutrients as inorganic N (DIN; ammonia-N and nitrite + nitrate (N + N)), organic N, orthophosphate, organic carbon (DOC), as well as chlorophyll and bacterial abundances. Physical water quality data were obtained from concurrent conductivity, temperature, and depth casts. Results showed that dissolved organic matter was highest at the most-hypoxic locations, DOC was negatively and significantly correlated with bottom-water dissolved oxygen (Pearson's  = -0.53,  = 0.05), and ammonia-N was the dominant DIN form pre-hypoxia before declining throughout hypoxia. N + N concentrations showed the reverse, being minimal pre-hypoxia then increasing during and following hypoxia, indicating that ammonia oxidation likely contributed to the switch in dominant DIN forms and is a key pathway in WLIS water column nitrification. Similarly, at the most hypoxic sampling site, bottom depth bacteria concentrations ranged ~ 1.8 × 10-1.1 × 10 cells ml pre-hypoxia, declined throughout hypoxia, and were positively and significantly correlated (Pearson's  = 0.57;  = 0.03) with ammonia-N, confirming that hypoxia influences N-cycling within LIS. These findings provide novel insight to feedbacks between major biogeochemical (N and C) cycles and hypoxia in urban estuaries.
Microbial nitrogen transformations in tundra soil depend on interactive effects of seasonality and plant functional types
Koranda M and Michelsen A
Nitrogen (N) cycling in organic tundra soil is characterised by pronounced seasonal dynamics and strong influence of the dominant plant functional types. Such patterns in soil N-cycling have mostly been investigated by the analysis of soil N-pools and net N mineralisation rates, which, however, yield little information on soil N-fluxes. In this study we investigated microbial gross N-transformations, as well as concentrations of plant available N-forms in soils under two dominant plant functional types in tundra heath, dwarf shrubs and mosses, in subarctic Northern Sweden. We collected organic soil under three dwarf shrub species of distinct growth form and three moss species in early and late growing season. Our results showed that moss sites were characterised by significantly higher microbial N-cycling rates and soil N-availability than shrub sites. Protein depolymerisation, the greatest soil N-flux, as well as gross nitrification rates generally did not vary significantly between early and late growing season, whereas gross N mineralisation rates and inorganic N availability markedly dropped in late summer at most sites. The magnitude of the seasonal changes in N-cycling, however, clearly differed among plant functional types, indicating interactive effects of seasonality and plant species on soil N-cycling. Our study highlights that the spatial variation and seasonal dynamics of microbial N transformations and soil N availability in tundra heath are intimately linked with the distinct influence of plant functional types on soil microbial activity and the plant species-specific patterns of nutrient uptake and carbon assimilation. This suggests potential strong impacts of future global change-induced shifts in plant community composition on soil N-cycling in tundra ecosystems.
Geochemical properties of blue carbon sediments through an elevation gradient: study of an anthropogenically impacted coastal lagoon
Grey A, Costeira R, Lorenzo E, O'Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR and Kelleher BP
Global research is showing that coastal blue carbon ecosystems are vulnerable to climate change driven threats including accelerated sea-level rise and prolonged periods of drought. Furthermore, direct anthropogenic impacts present immediate threats through deterioration of coastal water quality, land reclamation, long-term impact to sediment biogeochemical cycling. These threats will invariably alter the future efficacy of carbon (C) sequestration processes and it is imperative that currently existing blue carbon habitats be protected. Knowledge of underlying biogeochemical, physical and hydrological interactions occurring in functioning blue carbon habitats is essential for developing strategies to mitigate threats, and promote conditions to optimise C sequestration/storage. In this current work, we investigated how sediment geochemistry (0-10 cm depth) responds to elevation, an edaphic factor driven by long-term hydrological regimes consequently exerting control over particle sedimentation rates and vegetation succession. This study was performed in an anthropogenically impacted blue carbon habitat along a coastal ecotone encompassing an elevation gradient transect from intertidal sediments (un-vegetated and covered daily by tidal water), through vegetated salt marsh sediments (periodically covered by spring tides and flooding events), on Bull Island, Dublin Bay. We determined the quantity and distributions of bulk geochemical characteristics in sediments through the elevation gradient, including total organic carbon (TOC), total nitrogen (TN), total metals, silt, clay, and also, 16 individual polyaromatic hydrocarbon's (PAH's) as an indication of anthropogenic input. Elevation measurements for sample sites were determined on this gradient using a LiDAR scanner accompanied by an IGI inertial measurement unit (IMU) on board a light aircraft. Considering the gradient from the Tidal mud zone (T), through the low-mid marsh (M) to the most elevated upper marsh (H), there were significant differences between all zones for many measured environmental variables. The results of significance testing using Kruskal-Wallis analysis revealed, that %C, %N, PAH (µg/g), Mn (mg/kg), TOC:NH and pH are significantly different between all zones on the elevation gradient. The highest values for all these variables exists (excluding pH which followed a reverse trend) in zone H, decreasing in zone M and lowest in the un-vegetated zone T. TC content is 16 fold higher overall in vegetated (3.43 -21.84%) than uninhabited (0.21-0.56%) sediments. TN was over 50 times higher (0.24-1.76%), more specifically increasing in % mass on approach to the upper salt marsh with distance from the tidal flats sediments zone T (0.002-0.05%). Clay and silt distributions were greatest in vegetated sediments, increasing in % content towards upper marsh zones The retention of water, metals, PAHs, mud, chloride ions, NH , PO and SO increased with elevated C concentrations, concurrently where pH significantly decreased. Sediments were categorized with respect to PAH contamination where all SM samples were placed in the high polluted category. The results highlight the ability of Blue C sediments to immobilise increasing levels of C, N, and metals, and PAH with over time and with both lateral and vertical expansion. This study provides a valuable data set for an anthropogenically impacted blue carbon habitat predicted to suffer from sea-level rise and exponential urban development.
Temporal variability in dissolved organic matter composition export in streams
Begum MS, Kadjeski M, Fasching C and Xenopoulos MA
Export of dissolved organic carbon (DOC) from freshwater systems has been the focus of many studies owing to its pivotal role in regulating global carbon fluxes and ecosystem function. Both the flux and composition of dissolved organic matter (DOM) are critical for understanding its ecological impact, as similar compositions can have vastly different consequences depending on the magnitude of input and hydrological context. However, very little data exists on the composition of DOM export fluxes to downstream ecosystems. Here we investigate the interaction of water temperature and discharge on DOC and DOM composition export fluxes in two streams draining contrasting watersheds (agriculture versus forested) in southern Ontario, Canada across seasons. Using Generalized Additive Models, we observed that both stream discharge and water temperature significantly affected DOM composition, and the proportion of terrestrial humic-like DOM exhibited strong positive relationship with discharge. Although DOC loads were comparable between the two streams, the export loads and fluxes of DOM composition (in terms of fluorescent loads and fluxes) differed significantly. These patterns of DOM composition fluxes in both streams remained consistent across seasons, suggesting that watershed characteristics and nutrient availability primarily govern DOM dynamics and export, while seasonal drivers such as discharge and temperature further modulate these patterns. Export loads and fluxes of DOM components were higher in spring and winter months compared to summer and autumn in both streams, while fluxes also increased at medium (Q10-Q90) and high flow (> Q10) at a variable extent in the contrasting streams. Temperature and discharge regulated export of DOM can be further affected with changing climate and increasing frequency of extreme events and alter the processing and delivery of DOM to downstream ecosystems.