Drivers of diversification in sharks and rays (Chondrichthyes: Elasmobranchii)
Elasmobranchs (sharks and rays) are a charismatic lineage of unquestionable ecological importance in past and present marine ecosystems. Represented by over 1200 species, elasmobranchs have undergone substantial shifts in taxonomic diversity since their origin. Quantifying these diversification trends and their underlying causes improves our understanding of macroevolutionary processes and the factors influencing community composition through deep time. Studies addressing drivers of diversification in Elasmobranchii have yielded conflicting results; some report clear relationships between specific traits and diversification events, whilst others fail to find support for such relationships. There is also some evidence to suggest that biotic interactions or environmental factors (global climatic change and tectonic events) have shaped elasmobranch diversification dynamics. In this review, we summarise the diversification dynamics of elasmobranchs over their evolutionary history, before considering the evidence for the three principal hypothesised drivers of diversification in this clade: trait evolution, biotic interactions, and environmental change. Finally, we discuss major limitations in the field, and how discordant methodologies and data sources hamper our current understanding of diversification in Elasmobranchii. Whilst future studies will undoubtedly be required to further unravel this complex relationship, no single factor can be considered the sole satisfactory explanation for observed deep time diversification trends in Elasmobranchii to the exclusion of the other.
Editorial: Modeling the human well-being benefits of ecosystem restoration and management for environmental decision making
Identifying priority ecosystem services in tidal wetland restoration
Classification systems can be an important tool for identifying and quantifying the importance of relationships, assessing spatial patterns in a standardized way, and forecasting alternative decision scenarios to characterize the potential benefits (e.g., ecosystem services) from ecosystem restoration that improve human health and well-being. We present a top-down approach that systematically leverages ecosystem services classification systems to identify potential services relevant for ecosystem restoration decisions. We demonstrate this approach using the U.S. Environmental Protection Agency's National Ecosystem Service Classification System Plus (NESCS Plus) to identify those ecosystem services that are relevant to restoration of tidal wetlands. We selected tidal wetland management documents from federal agencies, state agencies, wetland conservation organizations, and land stewards across three regions of the continental United States (northern Gulf of Mexico, Mid-Atlantic, and Pacific Northwest) to examine regional and organizational differences in identified potential benefits of tidal wetland restoration activities and the potential user groups who may benefit. We used an automated document analysis to quantify the frequencies at which different wetland types were mentioned in the management documents along with their associated beneficiary groups and the ecological end products (EEPs) those beneficiaries care about, as defined by NESCS Plus. Results showed that a top combination across all three regions, all four organizations, and all four tidal wetland types was the EEP naturalness paired with the beneficiary people who care (existence). Overall, the Mid-Atlantic region and the land steward organizations mentioned ecosystem services more than the others, and EEPs were mentioned in combination with tidal wetlands as a high-level, more general category than the other more specific tidal wetland types. Certain regional and organizations differences were statistically significant. Those results may be useful in identifying ecosystem services-related goals for tidal wetland restoration. This approach for identifying and comparing ecosystem service priorities is broadly transferrable to other ecosystems or decision-making contexts.
Eco-decisional well-being networks as a tool for community decision support
Community decision making based on the sustainability of ecosystem services is an integrated process that involves multiple complex decisions and is greatly aided by an understanding of how those decisions are interrelated. The interrelatedness of decisions can be understood and even measured based on connections between actions and services and influence of services on domains of human well-being. These connections can be formed into a network structure so that quantifiable properties of networks can be applied to understanding decision impacts. We developed an eco-decisional network based on weighted social-ecological networks as a tool for integrated decision making based on ecosystem services and human well-being. Nodes are actions, services, or domains of human well-being and they are linked by weighted influence derived from community stakeholder input. Examination of the eco-decisional network, as well as comparison to pattern in the random networks, suggest there are important patterns of influence among different influence pathways from actions to community well-being, which describe community priorities and define unique roles through which chosen sets of actions can influence human well-being. The eco-decisional network is generalized across communities but can also be made community specific, which provides a tool for comparison between communities in decisional priorities (network properties), as well as comparisons between proposed actions within a community (network paths). The well-studied properties of networks, well-established network theory, as well as established network metrics make this approach promising for application to integrated decision making and for communicating possible outcomes to stakeholders. The result is a guidance tool for connecting propose actions to ecosystem services and human well-being.
Connecting stakeholder priorities and desired environmental attributes for wetland restoration using ecosystem services and a heat map analysis for communications
Framing ecological restoration and monitoring goals from a human benefits perspective (i.e., ecosystem services) can help inform restoration planners, surrounding communities, and relevant stakeholders about the direct benefits they may obtain from a specific restoration project. We used a case study of tidal wetland restoration in the Tillamook River watershed in Oregon, USA, to demonstrate how to identify and integrate community stakeholders/beneficiaries and the environmental attributes they use to inform the design of and enhance environmental benefits from ecological restoration. Using the U.S. Environmental Protection Agency's Final Ecosystem Goods and Services (FEGS) Scoping Tool, we quantify the types of ecosystem services of greatest common value to stakeholders/beneficiaries that lead to desired benefits that contribute to their well-being in the context of planned uses that can be incorporated into the restoration project. This case study identified priority stakeholders, beneficiaries, and environmental attributes of interest to inform restoration goal selection. This novel decision context application of the FEGS Scoping Tool also included an effort focused on how to communicate the connections between stakeholders, and the environmental attributes of greatest interest to them using heat maps.
Framework for multi-stressor physiological response evaluation in amphibian risk assessment and conservation
Controlled laboratory experiments are often performed on amphibians to establish causality between stressor presence and an adverse outcome. However, in the field, identification of lab-generated biomarkers from single stressors and the interactions of multiple impacts are difficult to discern in an ecological context. The ubiquity of some pesticides and anthropogenic contaminants results in potentially cryptic sublethal effects or synergistic effects among multiple stressors. Although biochemical pathways regulating physiological responses to toxic stressors are often well-conserved among vertebrates, different exposure regimes and life stage vulnerabilities can yield variable ecological risk among species. Here we examine stress-related biomarkers, highlight endpoints commonly linked to apical effects, and discuss differences in ontogeny and ecology that could limit interpretation of biomarkers across species. Further we identify promising field-based physiological measures indicative of potential impacts to health and development of amphibians that could be useful to anuran conservation. We outline the physiological responses to common stressors in the context of altered functional pathways, presenting useful stage-specific endpoints for anuran species, and discussing multi-stressor vulnerability in the larger framework of amphibian life history and ecology. This overview identifies points of physiological, ecological, and demographic vulnerability to provide context in evaluating the multiple stressors impacting amphibian populations worldwide for strategic conservation planning.
Enhancing multiple benefits of brownfield cleanups by applying ecosystem services concepts
Brownfields are increasingly called upon to be transformed from potentially contaminated, often vacant properties into community assets that provide multiple benefits. Further, brownfields revitalization can provide critical opportunities and, particularly, nature-based solutions can enhance multiple ecological, human health, and economic benefits. Through a series of non-exhaustive surveys of existing examples of environmental benefits of cleanups, case study examples of brownfield cleanups achieving environmental benefits, and potential ecosystem services tools relevant to steps of a brownfields cleanup effort, we explore practical ideas for enhancing environmental benefits of brownfields cleanups by applying ecosystem services concepts. Examples of nature-based solutions, where appropriate, include the use of rain gardens, permeable pavements, green spaces, and the use of green technologies. Further, this article provides an overview of recent policy initiatives focused on nature-based solutions and enhancing ecosystem services in brownfields cleanup, revitalization, and reuse. Our goals are to increase the knowledge base on these opportunities and discuss how these concepts can be achieved through sharing success stories, making outreach materials accessible, and holding workshops to help successfully operationalize these concepts in a community's visioning for upcoming revitalization projects.
The final ecosystem goods and services Voltron: the power of tools together
Environmental decision-making benefits from considering ecosystem services to ensure that aspects of the environment that people rely upon are fully evaluated. By focusing consideration of ecosystem services on final ecosystem goods and services (FEGS), the aspects of the environment directly enjoyed, used, or consumed by humans, these analyses can be more streamlined and effective. The U.S. Environmental Protection Agency has developed a set of tools to facilitate this consideration. The central feature of FEGS is that ecosystems are viewed through the diverse ways people directly benefit from them. The National Ecosystem Services Classification System (NESCS) Plus provides a framework for describing and identifying FEGS consistently. The standardization made available by NESCS Plus allows other tools and databases to interact using the NESCS Plus architecture and taxonomy, providing diverse insights for decision makers. Here, we examine the synergy of using the following four tools together: (1) the FEGS Scoping Tool; (2) the FEGS Metrics Report; (3) the EnviroAtlas; and (4) the EcoService Models Library. The FEGS Scoping Tool helps users determine what ecosystem services are relevant to a decision by harnessing FEGS understanding to enable communities to identify the relative importance of beneficiaries relevant to a decision and biophysical aspects of the environment of direct relevance to those beneficiaries. The FEGS Metrics Report can guide which metrics to monitor or model to represent those priority services. The EnviroAtlas, a powerful tool containing geospatial data and other resources related to ecosystem services, chemical and non-chemical stressors, and human health, and the EcoService Models Library, a database of ecosystem models, are two tools that support users in mapping and modeling endpoints relevant to priority services. While each of these tools is valuable on its own, together, they provide a powerful approach to easily incorporate and operationalize ecosystem services efforts into different parts of decision-making processes across different types of decisions. We illustrate how these integrated tools can be used together with a hypothetical example of a complex environmental management case study and the combined benefit of using the FEGS tools together.
Robustness of antiadhesion between nanofibers and surfaces covered with nanoripples of varying spatial period
Since nanofibers have a high surface-to-volume ratio, van der Waals forces render them attracted to virtually any surface. The high ratio provides significant advantages for applications in drug delivery, wound healing, tissue regeneration, and filtration. Cribellate spiders integrate thousands of nanofibers into their capture threads as an adhesive to immobilize their prey. These spiders have antiadhesive nanoripples on the calamistrum, a comb-like structure on their hindmost legs, and are thus an ideal model for investigating how nanofiber adhesion can be reduced. We found that these nanoripples had similar spacing in the cribellate species , and , independent of phylogenetic relation and size. Ripple spacing on other body parts (i.e., cuticle, claws, and spinnerets), however, was less homogeneous. To investigate whether a specific distance between the ripples determines antiadhesion, we fabricated nanorippled foils by nanosecond UV laser processing. We varied the spatial periods of the nanoripples in the range ~203-613 nm. Using two different pulse numbers resulted in ripples of different heights. The antiadhesion was measured for all surfaces, showing that the effect is robust against alterations across the whole range of spatial periods tested. Motivated by these results, we fabricated irregular surface nanoripples with spacing in the range ~130-480 nm, which showed the same antiadhesive behavior. The tested surfaces may be useful in tools for handling nanofibers such as spoolers for single nanofibers, conveyor belts for producing endless nanofiber nonwoven, and cylindrical tools for fabricating tubular nanofiber nonwoven. Engineered fibers such as carbon nanotubes represent a further candidate application area.
Investigating the unaccounted ones: insights on age-dependent reproductive loss in a viviparous fly
Most empirical and theoretical studies on reproductive senescence focus on observable attributes of offspring produced, such as size or postnatal survival. While harder to study, an important outcome of reproduction for a breeding individual is whether a viable offspring is produced at all. While prenatal mortality can sometimes be directly observed, this can also be indicated through an increase in the interval between offspring production. Both direct reproductive loss and presumed losses have been found to increase in older females across several species. Here, we study such reproductive loss (or "abortion") in tsetse, a viviparous and relatively long-lived fly with high maternal allocation. We consider how age-dependent patterns of abortion depend on the developmental stage of offspring and find that, as per previous laboratory studies, older females have higher rates of abortion at the late-larval stage, while egg-stage abortions are high both for very young and older females. We track the reproductive output of individual females and find little evidence that experiencing an abortion is an adaptive strategy to improve future reproductive outcomes. After an abortion, females do not generally take less time to produce their next offspring, these offspring are not larger, and there is no sex bias towards females, the sex with presumed higher fitness returns (being slightly larger and longer-lived than males, and with high insemination rates). Abortion rates are higher for breeding females experiencing stress, measured as nutritional deprivation, which echoes previous work in tsetse and other viviparous species, i.e., humans and baboons. We discuss our results in the context of studies on reproductive loss across taxa and argue that this is an important yet often overlooked reproductive trait which can vary with maternal age and can also depend on environmental stressors.
NAD(P) transhydrogenase isoform distribution provides insight into apicomplexan evolution
Membrane-located NAD(P) transhydrogenase (NTH) catalyses reversible hydride ion transfer between NAD(H) and NADP(H), simultaneously translocating a proton across the membrane. The enzyme is structurally conserved across prokaryotes and eukaryotes. In heterotrophic bacteria NTH proteins reside in the cytoplasmic membrane, whereas in animals they localise in the mitochondrial inner membrane. Eukaryotic NTH proteins exists in two distinct configurations (isoforms) and have non-mitochondrial functions in unicellular eukaryotes like , the causative agent of malaria. In this study, we carried out a systematic analysis of genes across eukaryotic life to determine its prevalence and distribution of isoforms. The results reveal that NTH is found across all major lineages, but that some organisms, notably plants, lack genes altogether. Isoform distribution and phylogenetic analysis reveals different gene loss scenarios in apicomplexan lineages, which sheds new light on the evolution of the Piroplasmida and .
Characterization of algal community composition and structure from the nearshore environment, Lake Tahoe (United States)
Periphyton assemblages from the nearshore environment of the west (California) side of Lake Tahoe, were analyzed to determine their taxonomic composition and community structure across habitats and seasons. Lake Tahoe is the second deepest lake in the US and an iconic oligotrophic subalpine lake with remarkable transparency. It has experienced offshore cultural eutrophication since the 1960s with observations of nuisance nearshore algal growth since the mid 2000s attributed to anthropogenic stressors. Samplings from November 2019-September 2020 provide useful snapshots against which older monitoring may be contextualized. A voucher flora, complete with descriptions, photo-documentation and referencing to species concepts employed, was created as a method of providing reproducible identification and enumeration of algal species, and more seamless reconciliation of detailed taxonomic data with future monitoring projects. The eulittoral zone (0-2 m) is seasonally dominated by elongate araphid () and stalked or entubed diatoms (). The sublittoral zone (>2 m) is dominated by a nitrogen-fixing -cyanobacteria assemblage with less seasonal changes in dominance and composition that expanded to impinge on the 2 m depths of the eulittoral zone in the Fall. Sublittoral epipsammic samples, despite their proximity to rocks, had a very distinct diatom composition and high species dominance, similar to what was seen in the Fall eulittoral samples, with high numbers of chains and small biraphid diatoms. The deeper samples at 30 and 50 m contained high numbers of live , and indicate a thriving sublittoral assemblage at these greater depths, but with less biomass. The 2019-20 data show many of the same diatom taxa observed in the 1970's and 1980's but with changes in species dominance. Notably, there was less of the green alga , when compared to the 1970's data, and a higher dominance by nitrogen fixing in the sublittoral zone, persisting year-round. These new data show roughly double the algal species biodiversity that had been documented previously in the Lake Tahoe nearshore, and is largely attributed to the methods employed. Adopting these new methods in future monitoring efforts should improve harmonization of taxonomic data and help advance our knowledge of the contributions to nearshore cultural eutrophication.
Social Communication in Big Brown Bats
Bats are social mammals that display a wide array of social communication calls. Among them, it is common for most bats species to emit distress, agonistic, appeasement and infant isolation calls. Big brown bats () are no different: They are gregarious animals living in colonies that can comprise hundreds of individuals. These bats live in North America and, typically found roosting in man-made structures like barns and attics, are considered common. They are insectivorous laryngeal echolocators, and while their calls and associated brain mechanisms in echolocation are well-documented, much less is known about their neural systems for analyzing social vocalizations. In this work we review what we know about the social lives of big brown bats and propose how to consolidate the nomenclature used to describe their social vocalizations. Furthermore, we discuss the next steps in the characterization of the social structure of this species and how these studies will advance both research in neuroethology and ecology of big brown bats.
Natural and Engineered Sex Ratio Distortion in Insects
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Diptera and Karyotype Databases: A Useful Dataset to Guide Evolutionary and Genomic Studies
Karyotypes and chromosome data have been widely used in many subfields of biology over the last century. Unfortunately, this data is largely scattered among hundreds of articles, books, and theses, many of which are only available behind paywalls. This creates a barrier to new researchers wishing to use this data, especially those from smaller institutions or in countries lacking institutional access to much of the scientific literature. We solved this problem by building two datasets for true flies (Order: Diptera and one specific to ), These datasets are available via a public interactive database that allows users to explore, visualize and download all data. The Diptera karyotype databases currently contain a total of 3,474 karyotype records from 538 publications. Synthesizing this data, we show several groups are of particular interest for future investigations by whole genome sequencing.
Patterns of fungal community assembly across two mosquito species
In the aquatic environment, mosquito larvae encounter bacteria and fungi that assemble into bacterial and fungal communities. The composition and impact of mosquito-associated bacterial community has been reported across larvae of various mosquito species. However, knowledge on the composition of mosquito-associated fungal communities and the drivers of their assembly remain largely unclear, particularly across mosquito species. In this study, we used high throughput sequencing of the fungal Internal transcribed spacer 2 (ITS2) metabarcode marker to identify fungal operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) associated with field-collected and larvae and their breeding water. Our analyses identified diverse fungal communities across larval breeding sites collected on a fine geographic scale. Our data show that the larval breeding site is the major determinant of fungal community assembly in these mosquito species. We also identified distinct fungal communities in guts and carcasses within each species. However, these tissue-specific patterns were less evident in than in larvae. The broad ecological patterns of fungal community assembly in mosquito larvae did not vary between OTU and ASV analyses. Together, this study provides the first insight into the fungal community composition and diversity in field collected and larvae using OTUs and ASVs. While these findings largely recapitulate our previous analyses in larvae, we report minor differences in tissue-specific fungal community assembly in larvae. Our results suggest that while the fungal community assembly in mosquito larvae may be generalized across mosquito species, variation in larval feeding behavior may impact fungal community assembly in the guts of mosquito larvae.
Pairing status and stimulus type predict responses to audio playbacks in female titi monkeys
Some paired primates use complex, coordinated vocal signals to communicate within and between family groups. The information encoded within those signals is not well understood, nor is the intricacy of individuals' behavioral and physiological responses to these signals. Considering the conspicuous nature of these vocal signals, it is a priority to better understand paired primates' responses to conspecific calls. Pair-bonded titi monkeys () sing duets comprised of the male and female's long call. Here, we use a playback study to assess female titi monkeys' responses to different vocal stimuli based on the subject's pairing status. Six adult female titi monkeys participated in the study at two timepoints--pre-pairing and post-pairing. At each timepoint, subjects underwent three distinct playbacks--control recording, male solo vocalization, and pair duet. Behaviors such as locomotion and vocalizations were scored during and after the playback, and cortisol and androgen values were assessed via a plasma blood sample. Female titi monkeys attended more to social signals compared to the control, regardless of pairing status. However, in the time immediately following any playback type, female titi monkeys trilled more and spent a greater proportion of time locomoting during pre-pairing timepoints (compared to post-pairing). Female titi monkeys' behavioral responses to social audio stimuli, combined with subjects' increases in cortisol and androgens as paired individuals, imply female titi monkeys attend and respond to social signals territorially.
Short branch attraction in phylogenomic inference under the multispecies coalescent
Accurate reconstruction of species trees often relies on the quality of input gene trees estimated from molecular sequences. Previous studies suggested that if the sequence length is fixed, the maximum likelihood may produce biased gene trees which subsequently mislead inference of species trees. Two key questions need to be answered in this context: what are the scenarios that may result in consistently biased gene trees? and for those scenarios, are there any remedies that may remove or at least reduce the misleading effects of consistently biased gene trees? In this article, we establish a theoretical framework to address these questions. Considering a scenario where the true gene tree is a 4-taxon star tree with two short branches leading to the species and , we demonstrate that maximum likelihood significantly favors the wrong bifurcating tree grouping the two species and with short branches. We name this inconsistent behavior short branch attraction, which may occur in real-world data involving a 4-taxon bifurcating gene tree with a short internal branch. If no mutation occurs along the internal branch, which is likely if the internal branch is short, the 4-taxon bifurcating tree is equivalent to the 4-taxon star tree and thus will suffer the same misleading effect of short branch attraction. Theoretical and simulation results further demonstrate that short branch attraction may occur in gene trees and species trees of arbitrary size. Moreover, short branch attraction is primarily caused by a lack of phylogenetic information in sequence data, suggesting that converting short internal branches to polytomies in the estimated gene trees can significantly reduce artifacts induced by short branch attraction.
Natural selection versus neutral mutation in the evolution of subterranean life: A false dichotomy?
Throughout the evolutionary tree, there are gains and losses of morphological features, physiological processes, and behavioral patterns. Losses are perhaps nowhere so prominent as for subterranean organisms, which typically show reductions or losses of eyes and pigment. These losses seem easy to explain without recourse to natural selection. Its most modern form is the accumulation of selectively neutral, structurally reducing mutations. Selectionist explanations include direct selection, often involving metabolic efficiency in resource poor subterranean environments, and pleiotropy, where genes affecting eyes and pigment have other effects, such as increasing extra-optic sensory structures. This dichotomy echoes the debate in evolutionary biology in general about the sufficiency of natural selection as an explanation of evolution, e.g., Kimura's neutral mutation theory. Tests of the two hypotheses have largely been one-sided, with data supporting that one or the other processes is occurring. While these tests have utilized a variety of subterranean organisms, the Mexican cavefish, , which has eyed extant ancestral-like surface fish conspecifics, is easily bred in the lab, and whose whole genome has been sequenced, is the favored experimental organism. However, with few exceptions, tests for selection versus neutral mutations contain limitations or flaws. Notably, these tests are often one sided, testing for the presence of one or the other process. In fact, it is most likely that both processes occur and make a significant contribution to the two most studied traits in cave evolution: eye and pigment reduction. Furthermore, narrow focus on neutral mutation hypothesis versus selection to explain cave-evolved traits often fails, at least in the simplest forms of these hypotheses, to account for aspects that are likely essential for understanding cave evolution: migration or epigenetic effects. Further, epigenetic effects and phenotypic plasticity have been demonstrated to play an important role in cave evolution in recent studies. Phenotypic plasticity does not by itself result in genetic change of course, but plasticity can reveal cryptic genetic variation which then selection can act on. These processes may result in a radical change in our thinking about evolution of subterranean life, especially the speed with which it may occur. Thus, perhaps it is better to ask what role the interaction of genes and environment plays, in addition to natural selection and neutral mutation.
Agricultural input modifies trophic niche and basal energy source of a top predator across human-modified landscapes
Land-use conversion and resulting habitat fragmentation can affect the source(s) of primary productivity that fuels food webs and alter their structure in ways that leads to biodiversity loss. We investigated the effects of landscape modification on food webs in the Araguaia River floodplain in central Brazil using the top predator, and indicator species (Crocodilia, Alligatoridae). We measured carbon ( ) and nitrogen ( ) isotope values of three tissues with different isotopic incorporation rates to evaluate spatial and temporal changes in caiman isotopic niche width with hierarchical Bayesian models that accounted for habitat use, intraspecific trait variation (sex and body size), and landscape attributes (composition and configuration). We also measured values of essential amino acids to assess if different primary producers are fueling aquatic food webs in natural and anthropogenic areas. Spatial analysis showed that caiman in agricultural areas had larger isotopic niche widths, which likely reflects some use of terrestrial resources in environments dominated by C plants. Patterns in values among essential amino acids were clearly different between natural and anthropogenic habitats. Overall, our findings suggest that caimans can persist in heterogeneous landscapes fueled by natural and agricultural energy sources of energy, which has implications for effectively managing such landscapes to maximize biodiversity.
Native and non-native winter foraging resources do not explain winter roost occupancy in Queensland, Australia
Anthropogenic land use change concurrent with introductions of non-native species alters the abundance and distribution of foraging resources for wildlife. This is particularly concerning when resource bottlenecks for wildlife are linked to spillover of infectious diseases to humans. Hendra virus is a bat-borne pathogen in eastern Australia. Spillovers align with winter food shortages for flying foxes and flying foxes foraging in agriculture or peri-urban lands, as opposed to native forests. It is believed the increased abundance and spatiotemporal reliability of non-native species planted in anthropogenically modified areas compared to native, ephemeral diet species may be a key draw for flying foxes into urban and peri-urban areas. We investigate the explanatory power of environmental factors on the winter roost occupancy of the reservoir for Hendra virus, the black flying fox , from 2007-2020 in Queensland, Australia. We measured the extent, spatial aggregation, and annual reliability of typical (i.e. native) and atypical (i.e. non-native) winter habitat species in 20km foraging areas around roosts surveyed by the National Flying Fox Monitoring Program. We find that neither the extent nor the spatial distribution of winter habitats explained black flying fox winter roost presence. Although the establishment of roosts was associated with high reliability for typical winter diet species, the reliability of frequently listed winter diet species surrounding surveyed roosts was not different between roosts that were occupied versus unoccupied in the winter. Significant interactions between lagged weather conditions and winter habitats identified by the best model did not reflect observable differences in patterns of occupancy upon scrutiny. Static measures of winter habitat and weather conditions poorly explained the winter roost occupancy of black flying foxes. Understanding the drivers of flying fox movement and presence requires further investigation before they can be thoughtfully integrated into Hendra spillover prevention efforts and flying fox management.
