ECOSYSTEMS

Vulnerable Waters are Essential to Watershed Resilience
Lane CR, Creed IF, Golden HE, Leibowitz SG, Mushet DM, Rains MC, Wu Q, D'Amico E, Alexander LC, Ali GA, Basu NB, Bennett MG, Christensen JR, Cohen MJ, Covino TP, DeVries B, Hill RA, Jencso K, Lang MW, McLaughlin DL, Rosenberry DO, Rover J and Vanderhoof MK
Watershed resilience is the ability of a watershed to maintain its characteristic system state while concurrently resisting, adapting to, and reorganizing after hydrological (for example, drought, flooding) or biogeochemical (for example, excessive nutrient) disturbances. Vulnerable waters include non-floodplain wetlands and headwater streams, abundant watershed components representing the most distal extent of the freshwater aquatic network. Vulnerable waters are hydrologically dynamic and biogeochemically reactive aquatic systems, storing, processing, and releasing water and entrained (that is, dissolved and particulate) materials along expanding and contracting aquatic networks. The hydrological and biogeochemical functions emerging from these processes affect the magnitude, frequency, timing, duration, storage, and rate of change of material and energy fluxes among watershed components and to downstream waters, thereby maintaining watershed states and imparting watershed resilience. We present here a conceptual framework for understanding how vulnerable waters confer watershed resilience. We demonstrate how individual and cumulative vulnerable-water modifications (for example, reduced extent, altered connectivity) affect watershed-scale hydrological and biogeochemical disturbance response and recovery, which decreases watershed resilience and can trigger transitions across thresholds to alternative watershed states (for example, states conducive to increased flood frequency or nutrient concentrations). We subsequently describe how resilient watersheds require spatial heterogeneity and temporal variability in hydrological and biogeochemical interactions between terrestrial systems and down-gradient waters, which necessitates attention to the conservation and restoration of vulnerable waters and their downstream connectivity gradients. To conclude, we provide actionable principles for resilient watersheds and articulate research needs to further watershed resilience science and vulnerable-water management.
A Classification Framework to Assess Ecological, Biogeochemical, and Hydrologic Synchrony and Asynchrony
Seybold EC, Fork ML, Braswell AE, Blaszczak JR, Fuller MR, Kaiser KE, Mallard JM and Zimmer MA
Ecosystems in the Anthropocene face pressures from multiple, interacting forms of environmental change. These pressures, resulting from land use change, altered hydrologic regimes, and climate change, will likely change the synchrony of ecosystem processes as distinct components of ecosystems are impacted in different ways. However, discipline-specific definitions and methods for identifying synchrony and asynchrony have limited broader synthesis of this concept among studies and across disciplines. Drawing on concepts from ecology, hydrology, geomorphology, and biogeochemistry, we offer a unifying definition of synchrony for ecosystem science and propose a classification framework for synchrony and asynchrony of ecosystem processes. This framework classifies the relationships among ecosystem processes according to five key aspects: 1) the focal variables or relationships representative of the ecosystem processes of interest, 2) the spatial and temporal domain of interest, 3) the structural attributes of drivers and focal processes, 4) consistency in the relationships over time, and 5) the degree of causality among focal processes. Using this classification framework, we identify and differentiate types of synchrony and asynchrony, thereby providing the basis for comparing among studies and across disciplines. We apply this classification framework to existing studies in the ecological, hydrologic, geomorphic, and biogeochemical literature, and discuss potential analytical tools that can be used to quantify synchronous and asynchronous processes. Furthermore, we seek to promote understanding of how different types of synchrony or asynchrony may shift in response to ongoing environmental change by providing a universal definition and explicit types and drivers with this framework.
Archaeological and Contemporary Evidence Indicates Low Sea Otter Prevalence on the Pacific Northwest Coast During the Late Holocene
Slade E, McKechnie I and Salomon AK
The historic extirpation and subsequent recovery of sea otters () have profoundly changed coastal social-ecological systems across the northeastern Pacific. Today, the conservation status of sea otters is informed by estimates of population carrying capacity or growth rates independent of human impacts. However, archaeological and ethnographic evidence suggests that for millennia, complex hunting and management protocols by Indigenous communities limited sea otter abundance near human settlements to reduce the negative impacts of this keystone predator on shared shellfish prey. To assess relative sea otter prevalence in the Holocene, we compared the size structure of ancient California mussels () from six archaeological sites in two regions on the Pacific Northwest Coast, to modern California mussels at locations with and without sea otters. We also quantified modern mussel size distributions from eight locations on the Central Coast of British Columbia, Canada, varying in sea otter occupation time. Comparisons of mussel size spectra revealed that ancient mussel size distributions are consistently more similar to modern size distributions at locations with a prolonged absence of sea otters. This indicates that late Holocene sea otters were maintained well below carrying capacity near human settlements as a result of human intervention. These findings illuminate the conditions under which sea otters and humans persisted over millennia prior to the Pacific maritime fur trade and raise important questions about contemporary conservation objectives for an iconic marine mammal and the social-ecological system in which it is embedded.
Elevated Allochthony in Stream Food Webs as a Result of Longitudinal Cumulative Effects of Forest Management
Erdozain M, Kidd KA, Emilson EJS, Capell SS, Kreutzweiser DP and Gray MA
The river continuum concept (RCC) predicts a downstream shift in the reliance of aquatic consumers from terrestrial to aquatic carbon sources, but this concept has rarely been assessed with longitudinal studies. Similarly, there are no studies addressing how forestry related disturbances to the structure of headwater food webs manifest (accumulate/dissipate) downstream and/or whether forest management alters natural longitudinal trends predicted by the RCC. Using stable isotopes of carbon, nitrogen and hydrogen, we investigated how: 1) autochthony in macroinvertebrates and fish change from small streams to larger downstream sites within a basin with minimal forest management (New Brunswick, Canada); 2) longitudinal trends in autochthony and food web length compare among three basins with different forest management intensity [intensive (harvest and replanting), extensive (harvest only), minimal] to detect potential cumulative/dissipative effects; and 3) forest management intensity and other catchment variables are influencing food web dynamics. We showed that, as predicted, the reliance of some macroinvertebrate taxa (especially collector feeders) on algae increased from small streams to downstream waters in the minimally managed basin, but that autochthony in the smallest shaded stream was higher than expected based on the RCC (as high as 90% for some taxa). However, this longitudinal increase in autochthony was not observed within the extensively managed basin and was weaker within the intensively managed one, suggesting that forest management can alter food web dynamics along the river continuum. The dampening of downstream autochthony indicates that the increased allochthony observed in small streams in response to forest harvesting cumulates downstream through the river continuum.
Celebrating 25 Years of Ecosystems
Turner MG and Carpenter SR
Fifty-Year Trends Reveal Reversal from Recovery to Re-eutrophication and Reinforced Anoxia in a Managed Mountain Lake
Weniger E and Sommaruga R
Anoxia in lakes has intensified in recent decades, threatening ecosystem functioning. Yet, the mechanisms driving long-term trends in anoxia intensity and duration are complex, especially in managed ecosystems, where field data are limited. Using a 50-year dataset from a lake affected by both eutrophication and restoration measures, we examined annual oxygen dynamics, assessing the effect of external drivers, such as climate warming and hypolimnetic withdrawal effectiveness, and of in-lake processes influencing anoxia. Breakpoint analysis revealed a major ecosystem regime shift around 1996, reversing the earlier recovery trend. Between 1972 and 1996, both the anoxic factor and hypolimnetic total phosphorus concentrations declined, but both rose significantly afterward, with phosphorus concentrations eventually exceeding pre-restoration levels, despite declining watershed inputs. This reversal coincided with a marked increase in thermal stratification duration, which likely intensified deoxygenation by limiting oxygen renewal in the hypolimnion. Our results also show that higher anoxia levels in 1 year significantly reinforced anoxia in the following year, suggesting a self-sustaining feedback mechanism. In addition, our results provide evidence that anaerobic mineralization is important to this feedback, accumulating reduced compounds that further enhance deoxygenation. Despite management efforts, the intensification of internal phosphorus loading and the accumulation of reduced substances have progressively diminished the effectiveness of the cost-effective hypolimnetic withdrawal system implemented since 1970. Our findings demonstrate how the emergence of reinforcing feedbacks, linking oxygen depletion, internal phosphorus release, and climate-driven stratification, can undermine traditional restoration strategies. This highlights the urgent need for adaptive management that explicitly addresses these interacting mechanisms among oxygen dynamics, nutrient cycling, and climate warming.
Animal-Mediated Ecosystem Process Rates in Forests and Grasslands are Affected by Climatic Conditions and Land-Use Intensity
Ambarlı D, Simons NK, Wehner K, Kämper W, Gossner MM, Nauss T, Neff F, Seibold S, Weisser W and Blüthgen N
Decomposition, vegetation regeneration, and biological control are essential ecosystem functions, and animals are involved in the underlying processes, such as dung removal, seed removal, herbivory, and predation. Despite evidence for declines of animal diversity and abundance due to climate change and land-use intensification, we poorly understand how animal-mediated processes respond to these global change drivers. We experimentally measured rates of four ecosystem processes in 134 grassland and 149 forest plots in Germany and tested their response to climatic conditions and land-use intensity, that is, grazing, mowing, and fertilization in grasslands and the proportion of harvested wood, non-natural trees, and deadwood origin in forests. For both climate and land use, we distinguished between short-term effects during the survey period and medium-term effects during the preceding years. Forests had significantly higher process rates than grasslands. In grasslands, the climatic effects on the process rates were similar or stronger than land-use effects, except for predation; land-use intensity negatively affected several process rates. In forests, the land-use effects were more pronounced than the climatic effects on all processes except for predation. The proportion of non-natural trees had the greatest impact on the process rates in forests. The proportion of harvested wood had negative effects, whereas the proportion of anthropogenic deadwood had positive effects on some processes. The effects of climatic conditions and land-use intensity on process rates mirror climatic and habitat effects on animal abundance, activity, and resource quality. Our study demonstrates that land-use changes and interventions affecting climatic conditions will have substantial impacts on animal-mediated ecosystem processes.
Exploring the Frequency and Distribution of Ecological Non-monotonicity in Associations among Ecosystem Constituents
Hanusch M, He X, Janssen S, Selke J, Trutschnig W and Junker RR
Complex links between biotic and abiotic constituents are fundamental for the functioning of ecosystems. Although non-monotonic interactions and associations are known to increase the stability, diversity, and productivity of ecosystems, they are frequently ignored by community-level standard statistical approaches. Using the copula-based dependence measure capable of quantifying the directed and asymmetric dependence between variables for all forms of (functional) relationships, we determined the proportion of non-monotonic associations between different constituents of an ecosystem (plants, bacteria, fungi, and environmental parameters). Here, we show that up to 59% of all statistically significant associations are non-monotonic. Further, we show that pairwise associations between plants, bacteria, fungi, and environmental parameters are specifically characterized by their strength and degree of monotonicity, for example, microbe-microbe associations are on average stronger than and differ in degree of non-monotonicity from plant-microbe associations. Considering directed and non-monotonic associations, we extended the concept of ecosystem coupling providing more complete insights into the internal order of ecosystems. Our results emphasize the importance of ecological non-monotonicity in characterizing and understanding ecosystem patterns and processes.
Wind as a Driver of Peat CO Dynamics in a Northern Bog
Campeau A, He H, Riml J, Humphreys E, Dalva M and Roulet N
Excess CO accumulated in soils is typically transported to the atmosphere through molecular diffusion along a concentration gradient. Because of the slow and constant nature of this process, a steady state between peat CO production and emissions is often established. However, in peatland ecosystems, high peat porosity could foster additional non-diffusive transport processes, whose dynamics may become important to peat CO storage, transport and emission. Based on a continuous record of in situ peat pore CO concentration within the unsaturated zone of a raised bog in southern Canada, we show that changes in wind speed create large diel fluctuations in peat pore CO store. Peat CO builds up overnight and is regularly flushed out the following morning. Persistently high wind speed during the day maintains the peat CO with concentrations close to that of the ambient air. At night, wind speed decreases and CO production overtakes the transport rate leading to the accumulation of CO in the peat. Our results indicate that the effective diffusion coefficient fluctuates based on wind speed and generally exceeds the estimated molecular diffusion coefficient. The balance between peat CO accumulation and transport is most dynamic within the range of 0-2 m s wind speeds, which occurs over 75% of the growing season and dominates night-time measurements. Wind therefore drives considerable temporal dynamics in peat CO transport and storage, particularly over sub-daily timescales, such that peat CO emissions can only be directly related to biological production over longer timescales.
Anthropogenic Eutrophication Drives Major Food Web Changes in Mwanza Gulf, Lake Victoria
King L, Wienhues G, Misra P, Tylmann W, Lami A, Bernasconi SM, Jaggi M, Courtney-Mustaphi C, Muschick M, Ngoepe N, Mwaiko S, Kishe MA, Cohen A, Heiri O, Seehausen O, Vogel H, Grosjean M and Matthews B
Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920-1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE-present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. and , typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem.
From Rangelands to Cropland, Land-Use Change and Its Impact on Soil Organic Carbon Variables in a Peruvian Andean Highlands: A Machine Learning Modeling Approach
Carbajal M, Ramírez DA, Turin C, Schaeffer SM, Konkel J, Ninanya J, Rinza J, De Mendiburu F, Zorogastua P, Villaorduña L and Quiroz R
Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables-SOC, refractory SOC (RSOC), and the C isotope composition of SOC (δC)-using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands ("bofedales") dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms-random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)-were used to model SOC variables using remote sensing data, land-use and land-cover (LULC, nine categories), climate topography, and sampled physical-chemical soil variables. RF was the best algorithm for SOC and δC prediction, whereas ANN was the best to model RSOC. "Bofedales" showed 2-3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted δC (- 27.0 ± 0.44 ‰) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of "bofedales" as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and δC. In contrast, climatic indices were more important environmental predictors for RSOC. This study's outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.
Linking Fire, Food Webs, and Fish in Stream Ecosystems
Roon DA, Bellmore JR, Benjamin JR, Robinne FN, Flitcroft RL, Compton JE, Ebersole JL, Dunham JB and Bladon KD
As wildfire regimes shift, resource managers are concerned about potential threats to aquatic ecosystems and the species they support, especially fishes. However, predicting fish responses can be challenging because wildfires affect aquatic ecosystems via multiple pathways. Application of whole-ecosystem approaches, such as food web modeling, can act as heuristic tools that offer valuable insights that account for these different mechanisms. We applied a dynamic food web simulation model that mechanistically linked stream trophic dynamics to the myriad effects that wildfires can have on aquatic and riparian ecosystems at a local stream reach-scale. We simulated how wildfires of different severity may influence short- (months to years) and long-term (years to decades) periphyton, aquatic invertebrate, and fish biomass dynamics in forested headwater streams of the western Pacific Northwest (USA). In many cases, wildfire increased modeled periphyton, invertebrate, and fish biomass over both short- and long-time periods. However, modeled responses varied extensively in their direction (that is, positive or negative), magnitude, and duration depending on fire severity, time since fire, and trophic level. The shapes of these response trajectories were especially sensitive to predicted wildfire effects on water temperature, canopy cover, riparian shading, and instream turbidity. Model simulations suggest a single fire could result in a wide range of aquatic ecosystem responses, especially in watersheds with mixed burn severity. Our analysis highlights the utility of whole-ecosystem approaches, like food web modeling, as heuristic tools for improving our understanding of the mechanisms linking fire, food webs, and fish and for identifying contexts where fires could have deleterious impacts on fishes.
Mapping the Spatial Heterogeneity of Watershed Ecosystems and Water Quality in Rainforest Fjordlands
Giesbrecht IJW, Lertzman KP, Tank SE, Frazer GW, St Pierre KA, Gonzalez Arriola S, Desmarais I and Haughton E
Small coastal watersheds (< 10,000 km) can play a large role in forming biogeochemical linkages between land and sea, yet the spatial heterogeneity of small watershed ecosystems is poorly understood due to sparse observations in many regions. In this study, we examined the spatial heterogeneity of water quality exported from diverse watersheds in two rainforest fjordland complexes. Samples were collected about monthly for a year from the outlets of 56 watersheds spanning from high mountains to low islands. Many (20) water quality properties varied significantly across six previously established watershed types defined by 12 easily computed geospatial variables. For example, organic matter concentrations ranged from very low in a Glacierized Mountains watershed type (1.2 ± 0.1 mg L DOC; 28.5 ± 4.6 µg L DON) to very high (15.1 ± 1.0 mg L DOC; 215.6 ± 20.4 µg L DON) in a Rain Lowlands type. Along this gradient, the dominant form of dissolved nitrogen switched from inorganic to organic and the dominant form of phosphorous switched from particulate to dissolved. Watershed type alone explained 67% of the variance in the first principal component of water quality (PC1) representing 20 water properties. Although underlying causes were likely complex, a great deal of spatial variation in water quality (for example, 91% of PC1) was predicted by simple measures of topography and climate (for example, elevation and mean annual precipitation). The physiographic structure of the coastal land mass appears to enable a complex mosaic of watershed ecosystems, which may affect meta-ecosystem function at the coastal margin.
Accelerating Mountain Forest Dynamics in the Alps
Thom D and Seidl R
Climate change alters forest development pathways, with consequences for ecosystem services and biodiversity. As the rate of warming increases, ecosystem change is expected to accelerate. However, ecosystem dynamics can have many causes unrelated to climate (for example, disturbance and stand development legacies). The compound effects of multiple drivers remain largely unclear. Here, we assessed forest dynamics over 28 years at Berchtesgaden National Park (BGNP), Germany, quantifying the spatiotemporal patterns and unraveling the drivers of forest change. We analyzed high-density forest inventory data, consisting of three consecutive censuses of 3759 permanent sample plots (132,866 tree records in total). We used semi-variograms to analyze spatial patterns of change, and boosted regression trees to quantify the effect of 30 covariates on changes in nine indicators of forest structure and composition. Over the 28 years investigated, the forests of BGNP were becoming denser, structurally more complex, and more species rich. Changes in forest structure were more pronounced and spatially correlated on the landscape than changes in tree species composition. Change rates of all indicators increased over time, signifying an acceleration of forest dynamics since the 1980s. Legacies and climate were the most important drivers of change, but had diverging impacts. Although forest change accelerated with increasing temperature, high legacy levels typical for late development stages dampened it. We here provide evidence for accelerating forest dynamics in mountain forests of the Alps, with potentially far-reaching consequences for biodiversity and ecosystem processes. We highlight that unmanaged forest development toward old-growth conditions could counteract climate-mediated acceleration of forest change.
Biocrusts Modulate Climate Change Effects on Soil Organic Carbon Pools: Insights From a 9-Year Experiment
Díaz-Martínez P, Panettieri M, García-Palacios P, Moreno E, Plaza C and Maestre FT
Accumulating evidence suggests that warming associated with climate change is decreasing the total amount of soil organic carbon (SOC) in drylands, although scientific research has not given enough emphasis to particulate (POC) and mineral-associated organic carbon (MAOC) pools. Biocrusts are a major biotic feature of drylands and have large impacts on the C cycle, yet it is largely unknown whether they modulate the responses of POC and MAOC to climate change. Here, we assessed the effects of simulated climate change (control, reduced rainfall (RE), warming (WA), and RE + WA) and initial biocrust cover (low (< 20%) versus high (> 50%)) on the mineral protection of soil C and soil organic matter quality in a dryland ecosystem in central Spain for 9 years. At low initial biocrust cover levels, both WA and RE + WA increased SOC, especially POC but also MAOC, and promoted a higher contribution of carbohydrates, relative to aromatic compounds, to the POC fraction. These results suggest that the accumulation of soil C under warming treatments may be transitory in soils with low initial biocrust cover. In soils with high initial biocrust cover, climate change treatments did not affect SOC, neither POC nor MAOC fraction. Overall, our results indicate that biocrust communities modulate the negative effect of climate change on SOC, because no losses of soil C were observed with the climate manipulations under biocrusts. Future work should focus on determining the long-term persistence of the observed buffering effect by biocrust-forming lichens, as they are known to be negatively affected by warming.
Disentangling the Legacies of Climate and Management on Tree Growth
Marqués L, Peltier DMP, Camarero JJ, Zavala MA, Madrigal-González J, Sangüesa-Barreda G and Ogle K
Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25-50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.
Material Legacies and Environmental Constraints Underlie Fire Resilience of a Dominant Boreal Forest Type
Day NJ, Johnstone JF, Reid KA, Cumming SG, Mack MC, Turetsky MR, Walker XJ and Baltzer JL
Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species' environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce () to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch () recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, black spruce relies on wet areas with deep soil organic layers where other species are less competitive. However, other species can colonize these areas if enough seed is available or soil moisture is altered by climate change. Testing mechanisms underlying species' resilience to disturbance aids predictions of where vegetation will transform with effects of climate change.
The Metabolic Regimes at the Scale of an Entire Stream Network Unveiled Through Sensor Data and Machine Learning
Segatto PL, Battin TJ and Bertuzzo E
Streams and rivers form dense networks that drain the terrestrial landscape and are relevant for biodiversity dynamics, ecosystem functioning, and transport and transformation of carbon. Yet, resolving in both space and time gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) at the scale of entire stream networks has been elusive so far. Here, combining Random Forest (RF) with time series of sensor data in 12 reach sites, we predicted annual regimes of GPP, ER, and NEP in 292 individual stream reaches and disclosed properties emerging from the network they form. We further predicted available light and thermal regimes for the entire network and expanded the library of stream metabolism predictors. We found that the annual network-scale metabolism was heterotrophic yet with a clear peak of autotrophy in spring. In agreement with the River Continuum Concept, small headwaters and larger downstream reaches contributed 16% and 60%, respectively, to the annual network-scale GPP. Our results suggest that ER rather than GPP drives the metabolic stability at the network scale, which is likely attributable to the buffering function of the streambed for ER, while GPP is more susceptible to flow-induced disturbance and fluctuations in light availability. Furthermore, we found large terrestrial subsidies fueling ER, pointing to an unexpectedly high network-scale level of heterotrophy, otherwise masked by simply considering reach-scale NEP estimations. Our machine learning approach sheds new light on the spatiotemporal dynamics of ecosystem metabolism at the network scale, which is a prerequisite to integrate aquatic and terrestrial carbon cycling at relevant scales.
Pulse, Shunt and Storage: Hydrological Contraction Shapes Processing and Export of Particulate Organic Matter in River Networks
Catalàn N, Campo RD, Talluto L, Mendoza-Lera C, Grandi G, Bernal S, Schiller DV, Singer G and Bertuzzo E
Streams and rivers act as landscape-scale bioreactors processing large quantities of terrestrial particulate organic matter (POM). This function is linked to their flow regime, which governs residence times, shapes organic matter reactivity and controls the amount of carbon (C) exported to the atmosphere and coastal oceans. Climate change impacts flow regimes by increasing both flash floods and droughts. Here, we used a modelling approach to explore the consequences of lateral hydrological contraction, that is, the reduction of the wet portion of the streambed, for POM decomposition and transport at the river network scale. Our model integrates seasonal leaf litter input as generator of POM, transient storage of POM on wet and dry streambed portions with associated decomposition and ensuing changes in reactivity, and transport dynamics through a dendritic river network. Simulations showed that the amount of POM exported from the river network and its average reactivity increased with lateral hydrological contraction, due to the combination of (1) low processing of POM while stored on dry streambeds, and (2) large shunting during flashy events. The sensitivity analysis further supported that high lateral hydrological contraction leads to higher export of higher reactivity POM, regardless of transport coefficient values, average reactivity of fresh leaf litter and differences between POM reactivity under wet and dry conditions. Our study incorporates storage in dry streambed areas into the pulse-shunt concept (Raymond and others in Ecology 97(1):5-16, 2016. 10.1890/14-1684.1), providing a mechanistic framework and testable predictions about leaf litter storage, transport and decomposition in fluvial networks.
Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond
Levin SA, Anderies JM, Adger N, Barrett S, Bennett EM, Cardenas JC, Carpenter SR, Crépin AS, Ehrlich P, Fischer J, Folke C, Kautsky N, Kling C, Nyborg K, Polasky S, Scheffer M, Segerson K, Shogren J, van den Bergh J, Walker B, Weber EU and Wilen J
The increasing frequency of extreme events, exogenous and endogenous, poses challenges for our societies. The current pandemic is a case in point; but "once-in-a-century" weather events are also becoming more common, leading to erosion, wildfire and even volcanic events that change ecosystems and disturbance regimes, threaten the sustainability of our life-support systems, and challenge the robustness and resilience of societies. Dealing with extremes will require new approaches and large-scale collective action. Preemptive measures can increase general resilience, a first line of protection, while more specific reactive responses are developed. Preemptive measures also can minimize the negative effects of events that cannot be avoided. In this paper, we first explore approaches to prevention, mitigation and adaptation, drawing inspiration from how evolutionary challenges have made biological systems robust and resilient, and from the general theory of complex adaptive systems. We argue further that proactive steps that go beyond will be necessary to reduce unacceptable consequences.
Riparian Forests and Macroinvertebrates Support Multiple Ecosystem Processes Across Temperate and Tropical Streams
Oester R, de Omena PM, da Costa LC, Moretti MS, Altermatt F and Bruder A
Ecosystems are interconnected, and ecological processes frequently transcend the physical boundaries that define them. Fluxes of energy, matter, and organisms not only form important ecosystem processes within but also between ecosystems. However, the role of biological drivers in simultaneously supporting multiple ecosystem processes at the interface between aquatic and terrestrial ecosystems (that is, aquatic-terrestrial ecosystem processes) remains poorly understood, both locally and across regions. To assess the relative importance of riparian forests, detritus consumers and leaf litter mixing on different ecosystem processes of freshwater detrital food webs, we used leaf litter bags to subsidise local terrestrial leaf litter to forested and non-forested headwater stream sites in a temperate and tropical region. We also manipulated macroinvertebrate access and the composition of leaf litter mixtures. We measured three key aquatic-terrestrial ecosystem processes: biomass accrual of aquatic fungi, nitrogen loss, and decomposition rates of local leaf litter. Across both temperate and tropical streams, ecosystem multifunctionality, that is, the simultaneous sustaining of these processes, was positively associated with macroinvertebrates and riparian forests but not with leaf litter mixing. Especially leaf litter nitrogen loss and decomposition rates were consistently higher when macroinvertebrates had access across all leaf litter species. Decomposition rates were also positively associated with the other ecosystem processes. These findings highlight consistent, cross-regional effects of riparian forests and macroinvertebrate detritivores on freshwater detrital food webs. In a rapidly changing world, understanding ecosystem processes in headwater streams demands a holistic view that transcends ecosystem borders and incorporates cross-ecosystem interactions.