PLASMA SOURCES SCIENCE & TECHNOLOGY

Atmospheric pressure plasma treatment of skin: penetration into hair follicles
Konina K, Freeman TA and Kushner MJ
Sterilization of skin prior to surgery is challenged by the reservoir of bacteria that resides in hair follicles. Atmospheric pressure plasma jets (APPJs) have been proposed as a method to treat and deactivate these bacteria as atmospheric plasmas are able to penetrate into structures and crevices with dimensions similar to those found in hair follicles. In this paper, we discuss results from a computational investigation of an APPJ sustained in helium flowing into ambient air, and incident onto a layered dielectric similar to human skin in which there are idealized hair follicles. We found that, depending on the location of the follicle, the bulk ionization wave (IW) incident onto the skin, or the surface IW on the skin, are able to launch IWs into the follicle. The uniformity of treatment of the follicle depends on the location of the of the plasma into the follicle on the top of the skin. Typically, only one side of the follicle is treated on for a given plasma pulse, with uniform treatment resulting from rastering the plasma jet across the follicle over many pulses. Plasma treatment of the follicle is sensitive to the angle of the follicle with respect to the skin, width of the follicle pocket, conductivity of the dermis and thickness of the underlying subcutaneous fat layer, the latter due to the change in capacitance of the tissue.
Foundations of plasma standards
Alves LL, Becker MM, van Dijk J, Gans T, Go DB, Stapelmann K, Tennyson J, Turner MM and Kushner MJ
The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
Vibrational kinetics in repetitively pulsed atmospheric pressure nitrogen discharges: average-power-dependent switching behaviour
Davies HL, Guerra V, van der Woude M, Gans T, O'Connell D and Gibson AR
Characterisation of the vibrational kinetics in nitrogen-based plasmas at atmospheric pressure is crucial for understanding the wider plasma chemistry, which is important for a variety of biomedical, agricultural and chemical processing applications. In this study, a 0-dimensional plasma chemical-kinetics model has been used to investigate vibrational kinetics in repetitively pulsed, atmospheric pressure plasmas operating in pure nitrogen, under application-relevant conditions (average plasma powers of 0.23-4.50 W, frequencies of 1-10 kHz, and peak pulse powers of 23-450 W). Simulations predict that vibrationally excited state production is dominated by electron-impact processes at lower average plasma powers. When the average plasma power increases beyond a certain limit, due to increased pulse frequency or peak pulse power, there is a switch in behaviour, and production of vibrationally excited states becomes dominated by vibrational energy transfer processes (vibration-vibration (V-V) and vibration-translation (V-T) reactions). At this point, the population of vibrational levels up to increases significantly, as a result of V-V reactions causing vibrational up-pumping. At average plasma powers close to where the switching behaviour occurs, there is potential to control the energy efficiency of vibrational state production, as small increases in energy deposition result in large increases in vibrational state densities. Subsequent pathways analysis reveals that energy in the vibrational states can also influence the wider reaction chemistry through vibrational-electronic (V-E) linking reactions (N + N N + N and N + N N + N ), which result in increased Penning ionisation and an increased average electron density. Overall, this study investigates the potential for delineating the processes by which electronically and vibrationally excited species are produced in nitrogen plasmas. Therefore, potential routes by which nitrogen-containing plasma sources could be tailored, both in terms of chemical composition and energy efficiency, are highlighted.
Reproducibility of 'COST reference microplasma jets'
Riedel F, Golda J, Held J, Davies HL, van der Woude MW, Bredin J, Niemi K, Gans T, Schulz-von der Gathen V and O'Connell D
Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.
Multi-scale investigation in the frequency domain of Ar/HMDSO dusty plasma with pulsed injection of HMDSO
Garofano V, Bérard R, Boivin S, Joblin C, Makasheva K and Stafford L
A combination of time-resolved optical emission spectroscopy measurements and collisional-radiative modeling is used to investigate the phenomena occurring over multiple time scales in the frequency domain of a low-pressure, axially-asymmetric capacitively-coupled RF argon plasma with pulsed injection of hexamethyldisiloxane (HMDSO, SiO(CH)). The collisional-radiative model developed here considers the population of argon 1s and all ten 2p levels (in Paschen's notation). The presence of HMDSO in the plasma is accounted for in the model by quenching of the argon 1s states by species generated by plasma processing of HMDSO, including HMDSO-15 (SiO(CH)), acetylene (CH) and methane (CH). Detailed analysis of the relative populations of Ar 2p states reveals cyclic evolutions of the electron temperature, electron density and quenching frequency that are shown to be linked to the kinetics of dust formation in Ar/HMDSO plasmas. Penning ionization of HMDSO and its fragments is found to be an important source of electrons for the plasma maintenance. It is at the origin of the cyclic formation/disappearance of the dust cloud, without attenuation of the phenomenon, as long as the pulsed injection of HMDSO is sustained. The multi-scale approach used in this study further reveals the straightforward relation of the frequency of HMDSO pulsed injection, in particular the HMDSO duty cycle, with the frequency of dust formation/disappearance cycle.
Disrupting the spatio-temporal symmetry of the electron dynamics in atmospheric pressure plasmas by voltage waveform tailoring
Gibson AR, Donkó Z, Alelyani L, Bischoff L, Hübner G, Bredin J, Doyle S, Korolov I, Niemi K, Mussenbrock T, Hartmann P, Dedrick JP, Schulze J, Gans T and O'Connell D
Single frequency, geometrically symmetric Radio-Frequency (rf) driven atmospheric pressure plasmas exhibit temporally and spatially symmetric patterns of electron heating, and consequently, charged particle densities and fluxes. Using a combination of phase-resolved optical emission spectroscopy and kinetic plasma simulations, we demonstrate that tailored voltage waveforms consisting of multiple rf harmonics induce targeted disruption of these symmetries. This confines the electron heating to small regions of time and space and enables the electron energy distribution function to be tailored.
Plasma generation and processing of interstellar carbonaceous dust analogs
Peláez RJ, Maté B, Tanarro I, Molpeceres G, Jiménez-Redondo M, Timón V, Escribano R and Herrero VJ
Interstellar (IS) dust analogs, based on amorphous hydrogenated carbon (a-C:H) were generated by plasma deposition in RF discharges of CH + He mixtures. The a-C:H samples were characterized by means of secondary electron microscopy (SEM), infrared (IR) spectroscopy and UV-visible reflectivity. DFT calculations of structure and IR spectra were also carried out. From the experimental data, atomic compositions were estimated. Both IR and reflectivity measurements led to similar high proportions (≈ 50%) of H atoms, but there was a significant discrepancy in the sp/sp hybridization ratios of C atoms (sp/sp = 1.5 from IR and 0.25 from reflectivity). Energetic processing of the samples with 5 keV electrons led to a decay of IR aliphatic bands and to a growth of aromatic bands, which is consistent with a dehydrogenation and graphitization of the samples. The decay of the CH aliphatic stretching band at 3.4 µm upon electron irradiation is relatively slow. Estimates based on the absorbed energy and on models of cosmic ray (CR) flux indicate that CR bombardment is not enough to justify the observed disappearance of this band in dense IS clouds.
Chemistry in glow discharges of H / O mixtures. Diagnostics and modelling
Jiménez-Redondo M, Carrasco E, Herrero VJ and Tanarro I
The chemistry of low pressure H + O discharges with different mixture ratios has been studied in a hollow cathode DC reactor. Neutral and positive ion distributions have been measured by mass spectrometry, and Langmuir probes have been used to provide charge densities and electron temperatures. A simple zero order kinetic model including neutral species and positive and negative ions, which takes into account gas-phase and heterogeneous chemistry, has been used to reproduce the global composition of the plasmas over the whole range of mixtures experimentally studied, and allows for the identification of the main physicochemical mechanisms that may explain the experimental results. To our knowledge, no combined experimental and modelling studies of the heavy species kinetics of low pressure H + O plasmas including ions has been reported before. As expected, apart from the precursors, HO is detected in considerable amounts. The model also predicts appreciable concentrations of H and O atoms and the OH radical. The relevance of the metastable species O(D) and O(aΔ) is analysed. Concerning the charged species, positive ion distributions are dominated by HO for a wide range of intermediate mixtures, while H and O are the major ions for the higher and lower H/O ratios, respectively. The mixed ions OH, HO and HO are also observed in small amounts. Negative ions are shown to have a limited relevance in the global chemistry; their main contribution is the reduction of the electron density available for electron impact processes.
Measurements of streamer head potential and conductivity of streamer column in the cold nonequilibrium atmospheric plasmas
Shashurin A, Shneider MN and Keidar M
This work presents a simple method for the characterization of streamers developing in cold atmospheric plasma jets. The method is based upon stopping ("scattering") of streamer by means of external DC potential in order to determine the potential of the streamer head. The experimental evidence presented in this work does not support the model of the electrically insulated streamer head. On the contrary, it is shown that the electrode potential is transferred to the streamer head along the streamer column to which it is attached with no significant voltage drop. Based on the proposed method, we determine various streamer parameters such as head charge (1-2×10 electrons), electrical field in the head vicinity (about 100 kV/cm), average conductivity (10 Ωcm) and plasma density of the streamer column (2×10 cm).