EARTH SURFACE PROCESSES AND LANDFORMS

Comparability of multi-temporal DTMs derived from different LiDAR platforms: Error sources and uncertainties in the application of geomorphic impact studies
Kamp N, Krenn P, Avian M and Sass O
Multi-temporal digital terrain models (DTMs) derived from airborne or uncrewed aerial vehicle (UAV)-borne light detection and ranging (LiDAR) platforms are frequently used tools in geomorphic impact studies. Accurate estimation of mobilized sediments from multi-temporal DTMs is indispensable for hazard assessment. To study volumetric changes in alpine environments it is crucial to identify and discuss different kind of error sources in multi-temporal data. We subdivided errors into those caused by data acquisition, data processing, and spatial properties of the terrain. In terms of the quantification of surface changes, the propagation of errors can lead to high uncertainties. Three alpine catchments with different LiDAR point clouds of different origins (airborne laser scanning [ALS], UAV-borne laser scanning [ULS]), varying point densities, accuracies and qualities were analysed, and used as basis for interpolating DTMs. The workflow was developed in the Schöttlbach area in Styria and later applied to further catchments in Austria. The main aim of the presented work is a comprehensive DTM uncertainty analysis specially designed for geomorphic impact studies, with a resulting uncertainty analysis serving as input for a change detection tool. Our findings reveal that geomorphic impact studies need the careful distinction between actual surface changes and different data uncertainties. ULS combines the benefits of terrestrial laser scanning with all the benefits of ALS. However, the use of ULS data does not necessarily improve the results of the analysis since the high level of detail is not always helpful in geomorphic impact studies. In order to make the different point clouds and DTMs comparable the quality of the ULS point cloud had to be reduced to fit the accuracy of the reference data (older ALS point clouds). Using a point cloud with a high point density with a regular planimetric point spacing and less data gaps, in the best case collected during leaf-off conditions (e.g., cross-flight strategy) turned out to be sufficient for our geomorphic research purposes.
WOOD PREDICTORS IN NEOTROPICAL STREAMS: ASSESSING THE EFFECTS OF REGIONAL AND LOCAL CONTROLS IN AMAZON AND CERRADO CATCHMENTS
Saraiva SO, Kaufmann PR, Rutherfurd I, Leal CG, Leitão RP, Macedo DR and Pompeu PS
Large wood plays a critical role providing complex habitat structure in rivers and streams. The instream wood regime consists of wood recruitment, transport, retention, and decay in river corridors. In tropical streams, transport and decay are thought to be the dominant influences on the amount instream wood stored, and these are driven by upstream forest cover, as well as catchment hydroclimatic and geomorphic characteristics. Lack of studies of the tropical wood regime leave many uncertainties. Notably, the wood regimes in the neotropical Amazon and Cerrado biomes are not known, and rapidly changing land-use threatens efforts to understand their natural wood regime. We investigated predictors of instream wood in catchments of the Amazon and Cerrado subject to a wide range of agricultural land use to identify the critical factors controlling wood recruitment and load. Using the structural equation modelling technique, we disentangled the complex net of regional and local controls. Contrary to our expectations, local drivers, such as the relation between the piece size and channel dimensions, discharge, stream power and riparian forest were the most important predictors of instream wood. The amounts of wood found in these streams were primarily the result of the wood delivered by the local riparian forest and how much of that wood remains trapped. Therefore, the preservation of the forested riparian zones in Amazon and Cerrado streams is crucial for maintaining the sources of wood as well as the channel morphology capable of trapping and retaining instream wood. Further research should compare reference and disturbed streams to quantify the influence of anthropogenic activities on instream wood and its primary influences. This information would facilitate assessing the extent of human alteration and developing mitigating measures to arrest or reverse changes that reduce instream wood and degrade aquatic and riparian habitat in neotropical rivers and streams.
Forward modelling of the completeness and preservation of palaeoclimate signals recorded by ice-marginal moraines
Rowan AV, Egholm DL and Clark CD
Glaciers fluctuate in response to climate change and record these changes by building sedimentary landforms, including moraines. Therefore, glacial landscapes are a potentially valuable archive of terrestrial palaeoclimate change. Typically, a cooling climate causes glaciers to expand and a warming climate causes glaciers to shrink. However, the glacier response time and the influence of mountainous topography on glacier dynamics complicates this behaviour, such that moraines are not always a straightforward indicator of glacier change in response to climate change. We used a glacial landscape evolution model to simulate the response of a hypothetical mountain glacier to simple changes in climate and the resulting formation and preservation of moraines. These results show that the rate of climate change relative to the glacier response time determines the geometry, number, and position of moraines. Glaciers can build distinct moraines in the absence of climate change. The distance from the maximum ice extent may not represent the chronological order of moraine formation. Moraines can be preserved after being overrun and eroded by subsequent glaciations, but moraine sequences may also contain gaps that are unidentifiable in the field.
Modelling the effects of normal faulting on alluvial river meandering
Woolderink HAG, Weisscher SAH, Kleinhans MG, Kasse C and van Balen RT
The meandering of alluvial rivers may be forced by normal faulting due to tectonically altered topographic gradients of the river valley and channel at and near the fault zone. Normal faulting can affect river meandering by either instantaneous (e.g. surface-rupturing earthquakes) or gradual displacement. To enhance our understanding of river channel response to tectonic faulting at the fault zone scale we used the physics-based, two-dimensional morphodynamic model Nays2D to simulate the responses of a laboratory-scale alluvial river with vegetated floodplain to various faulting and offset scenarios. The results of a model with normal fault downstepping in the downstream direction show that channel sinuosity and bend radius increase up to a maximum as a result of the faulting-enhanced valley gradient. Hereafter, a chute cutoff reduces channel sinuosity to a new dynamic equilibrium value that is generally higher than the pre-faulting sinuosity. A scenario where a normal fault downsteps in the upstream direction leads to reduced morphological change upstream of the fault due to a backwater effect induced by the faulting. The position within a meander bend at which faulting occurs has a profound influence on the evolution of sinuosity; fault locations that enhance flow velocities over the point bar during floods result in a faster sinuosity increase and subsequent chute cutoff than locations that enhance flow velocity directed towards the floodplain. This upward causation from the bend scale to the reach and floodplain scale arises from the complex interactions between meandering and floodplain and the nonlinearities of the sediment transport and chute cutoff processes. Our model results provide a guideline to include process-based reasoning in the interpretation of geomorphological and sedimentological observations of fluvial response to faulting. The combination of these approaches leads to better predictions of possible effects of faulting on alluvial river meandering.
Alluvial connectivity in multi-channel networks in rivers and estuaries
Sonke W, Kleinhans MG, Speckmann B, van Dijk WM and Hiatt M
Channels in rivers and estuaries are the main paths of fluvial and tidal currents that transport sediment through the system. While network representations of multi-channel systems and their connectivity are quite useful for characterisation of braiding patterns and dynamics, the recognition of channels and their properties is complicated because of the large bed elevation variations, such as shallow shoals and bed steps that render channels visually disconnected. We present and analyse two mathematically rigorous methods to identify channel networks from a terrain model of the river bed. Both methods construct a dense network of locally steepest-descent channels from saddle points on the terrain, and select a subset of channels with a certain minimum sediment volume between them. This is closely linked to the main mechanism of channel formation and change by displacement of sediment volume. The two methods differ in how they compute these sediment volumes: either globally through the entire length of the river, or locally. We compare the methods for the measured bathymetry of the Western Scheldt estuary, The Netherlands, over the past decades. The global method is overly sensitive to small changes elsewhere in the network compared to the local method. We conclude that the local method works best conceptually and for stability reasons. The associated concept of alluvial connectivity between channels in a network is thus the inverse of the volume of sediment that must be displaced to merge the channels. Our method opens up possibilities for new analyses as shown in two examples. First, it shows a clear pattern of scale dependence on volume of the total network length and of the number of nodes by a power law relation, showing that the smaller channels are relatively much shorter. Second, channel bifurcations were found to be predominantly mildly asymmetrical, which is unexpected from fluvial bifurcation theory.
UAV RGB, thermal infrared and multispectral imagery used to investigate the control of terrain on the spatial distribution of dryland biocrust
Blanco-Sacristán J, Panigada C, Gentili R, Tagliabue G, Garzonio R, Martín MP, Ladrón de Guevara M, Colombo R, Dowling TPF and Rossini M
Biocrusts (topsoil communities formed by mosses, lichens, bacteria, fungi, algae, and cyanobacteria) are a key biotic component of dryland ecosystems. Whilst climate patterns control the distribution of biocrusts in drylands worldwide, terrain and soil attributes can influence biocrust distribution at landscape scale. Multi-source unmanned aerial vehicle (UAV) imagery was used to map and study biocrust ecology in a typical dryland ecosystem in central Spain. Red, green and blue (RGB) imagery was processed using structure-from-motion techniques to map terrain attributes related to microclimate and terrain stability. Multispectral imagery was used to produce accurate maps (accuracy > 80%) of dryland ecosystem components (vegetation, bare soil and biocrust composition). Finally, thermal infrared (TIR) and multispectral imagery was used to calculate the apparent thermal inertia (ATI) of soil and to evaluate how ATI was related to soil moisture (  = 0.83). The relationship between soil properties and UAV-derived variables was first evaluated at the field plot level. Then, the maps obtained were used to explore the relationship between biocrusts and terrain attributes at ecosystem level through a redundancy analysis. The most significant variables that explain biocrust distribution are: ATI (34.4% of variance,  = 130.75;  < 0.001), Elevation (25.8%,  = 97.6;  < 0.001), and potential solar incoming radiation (PSIR) (52.9%,  = 200.1;  < 0.001). Differences were found between areas dominated by lichens and mosses. Lichen-dominated biocrusts were associated with areas with high slopes and low values of ATI, with soil characterized by a higher amount of soluble salts, and lower amount of organic carbon, total phosphorus (P) and total nitrogen (N). Biocrust-forming mosses dominated lower and moister areas, characterized by gentler slopes and higher values of ATI with soils with higher contents of organic carbon, P and N. This study shows the potential to use UAVs to improve our understanding of drylands and to evaluate the control that the terrain has on biocrust distribution.
Benthic species as mud patrol - modelled effects of bioturbators and biofilms on large-scale estuarine mud and morphology
Brückner MZM, Schwarz C, Coco G, Baar A, Boechat Albernaz M and Kleinhans MG
Sediment-stabilizing and -destabilizing organisms, i.e. microphytobenthos (biofilms) and macrozoobenthos (bioturbators), affect the erodibility of muddy sediments, potentially altering large-scale estuarine morphology. Using a novel eco-morphodynamic model of an idealized estuary, we investigate eco-engineering effects of microphytobenthos and two macrozoobenthic bioturbators. Local mud erodibility is based on species pattern predicted through hydrodynamics, soil mud content, competition and grazing. Mud resuspension and export is enhanced under bioturbation and prevented under biostabilization through respective exposure and protection of the supra- and intertidal. Bioturbation decreases mud thickness and bed elevations, which increases net mud fluxes. Microphytobenthos reduces erosion, leading to a local mud increase of intertidal sediments. In multi-species scenarios, an effective mud-prone bioturbator strongly alters morphology, exceeding that of a more abundant sand-prone moderate species, showing that morphological change depends on species traits as opposed to abundance. Altering their habitat, the effective mud-prone bioturbator facilitates expansion of the sand-prone moderate bioturbator. Grazing and species competition favor species distributions of dominant bioturbators. Consequently, eco-engineering affects habitat conditions while species interactions determine species dominance. Our results show that eco-engineering species determine the mud content of the estuary, which suggests large effects on the morphology of estuaries with aggravating habitat degradation.
Natural levee evolution in vegetated fluvial-tidal environments
Boechat Albernaz M, Roelofs L, Pierik HJ and Kleinhans MG
Natural levees are common features in river, delta and tidal landscapes. They are elevated near-channel morphological features that determine the connection between channel and floodbasin, and consequently affect long-term evolution up to delta-scales. Despite their relevance in shaping fluvial-tidal systems, research on levees is sparse and often limited to fluvial or non-tidal case studies. There is also a general lack of understanding of the role of vegetation in shaping these geomorphic units, and how levee morphology and dimensions vary in the transition from fluvial to coastal environments, where tides are increasingly important. Our goal is to unravel the effects of fluvial-tidal boundary conditions, sediment supply and vegetation on levee characteristics and floodbasin evolution. These conditions were systematically explored by 60 large-scale idealized morphodynamic simulations in Delft3D which self-developed levees over the course of one century. We compared our results to a global levee dataset compilation of natural levee dimensions. We found that levee height is determined by the maximum water level, provided sufficient levee building sediments are available. Discharge fluctuations increased levee width and triggered more levee breaches, i.e. crevasses, that effectively filled the fluvio-tidal floodbasin. The presence of wood-type (sparse) vegetation further increased the number of crevasses in comparison with the non-vegetated scenarios. Conversely, reed-type (dense) vegetation strongly dampened tidal amplitude and reduced the accommodation space and sedimentation further into the floodbasin, resulting in narrower levees, no crevasses and limited floodbasin accretion. However, dense vegetation reduced tidal forces which allowed levee growth further downstream. Ultimately, the levees merged with the coastal barrier, eliminating the floodbasin tides entirely. Our results elucidate the mechanisms by which levee and crevasse formation, and vegetation may fill fluvio-tidal wetlands and affect estuary evolution. This brings new insights for geological reconstructions as well as for the future management of deltas and estuaries under sea-level rise. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
Upstream perturbation and floodplain formation effects on chute-cutoff-dominated meandering river pattern and dynamics
Weisscher SAH, Shimizu Y and Kleinhans MG
A sustained dynamic inflow perturbation and bar-floodplain conversion are considered crucial to dynamic meandering. Past experiments, one-dimensional modelling and linear theory have demonstrated that the initiation and persistence of dynamic meandering require a periodic transverse motion of the inflow. However, it remains unknown whether the period of the inflow perturbation affects self-formed meander dynamics. Here, we numerically study the effect of the inflow perturbation period on the development and meander dynamics of a chute-cutoff-dominated river, which requires two-dimensional modelling with vegetation forming floodplain on bars. We extended the morphodynamic model Nays2D with growth and mortality rules of vegetation to allow for meandering. We tested the effect of a transversely migrating inflow boundary by varying the perturbation period between runs over an order of magnitude around typical modelled meander periods. Following the cutoff cascade after initial meander formation from a straight channel, all runs with sufficient vegetation show series of growing meanders terminated by chute cutoffs. This generates an intricate channel belt topography with point bar complexes truncated by chutes, oxbow lakes, and scroll-bar-related vegetation age patterns. The sinuosity, braiding index and meander period, which emerge from the inherent biomorphological feedback loops, are unrelated to the inflow perturbation period, although the spin-up to dynamic equilibrium takes a longer time and distance for weak and absent inflow perturbations. This explains why, in previous experimental studies, dynamic meandering was only accomplished with a sustained upstream perturbation in flumes that were short relative to the meander wavelength. Our modelling of self-formed meander patterns is evidence that scroll-bar-dominated and chute-cutoff-dominated meanders develop from downstream convecting instabilities. This insight extends to many more fluvial, estuarine and coastal systems in morphological models and experiments, which require sustained dynamic perturbations to form complex patterns and develop natural dynamics. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.
Living landscapes: Muddy and vegetated floodplain effects on fluvial pattern in an incised river
Kleinhans MG, de Vries B, Braat L and van Oorschot M
Cohesive floodplain sediment and vegetation are both thought to cause meandering river patterns. Our aims are to compare the isolated and combined effects of mud and vegetation on river planform and morphodynamics in the setting of intermediate-sized valley rivers. We use a numerical model for century-scale simulation of flow, sediment transport and morphology coupled with riparian vegetation settlement, growth and mortality as functions of species traits on which flow resistance depends. Mud fluxes were predicted by excess shear stress relations in combination with the active layer formulation. We found that valley-flooding water levels increase with vegetation density, causing a higher braiding intensity rather than meandering tendency. The shear stress during floods carves channels through the muddy floodplain surface. Higher mud concentration, on the other hand, increases floodplain aggradation, reduces the overbank flow frequency and ultimately causes formation of a single-thread channel. Vegetation causes mud to deposit closer to the river channel as a levee, showing that mud sedimentation and vegetation settling mutually enhance floodplain formation. However, mud and vegetation counteract in two ways. First, vegetation enhances floodplain accretion, which ultimately increases plant desiccation for high mud concentrations. Second, vegetation increases the tendency of periodic chute cutoffs in valleys. The chute cutoffs locally reset the landscape and create new windows of opportunity for the vegetation. Surprisingly, in systems with a high mud concentration this causes hysteretic loops of vegetation cover and delayed mud deposition. Ramifications for the interpretation of Palaeozoic fluvial facies are that even rootless vegetation, capturing cohesive mud closer to the river channel to form thicker floodplain on the point bar, can enhance the tendency to meander and, under high mud supply, form stable channels. However, meandering is more unlikely in narrower valley rivers with higher vegetation density.
Sediment and nutrient storage in a beaver engineered wetland
Puttock A, Graham HA, Carless D and Brazier RE
Beavers, primarily through the building of dams, can deliver significant geomorphic modifications and result in changes to nutrient and sediment fluxes. Research is required to understand the implications and possible benefits of widespread beaver reintroduction across Europe. This study surveyed sediment depth, extent and carbon/nitrogen content in a sequence of beaver pond and dam structures in South West England, where a pair of Eurasian beavers (Castor fiber) were introduced to a controlled 1.8 ha site in 2011. Results showed that the 13 beaver ponds subsequently created hold a total of 101.53 ± 16.24 t of sediment, equating to a normalised average of 71.40 ± 39.65 kg m. The ponds also hold 15.90 ± 2.50 t of carbon and 0.91 ± 0.15 t of nitrogen within the accumulated pond sediment. The size of beaver pond appeared to be the main control over sediment storage, with larger ponds holding a greater mass of sediment per unit area. Furthermore, position within the site appeared to play a role with the upper-middle ponds, nearest to the intensively-farmed headwaters of the catchment, holding a greater amount of sediment. Carbon and nitrogen concentrations in ponds showed no clear trends, but were significantly higher than in stream bed sediment upstream of the site. We estimate that >70% of sediment in the ponds is sourced from the intensively managed grassland catchment upstream, with the remainder from redistribution by beaver activity. While further research is required into the long-term storage and nutrient cycling within beaver ponds, results indicate that beaver ponds may help to mitigate the negative off-site impacts of accelerated soil erosion and diffuse pollution from agriculturally dominated landscapes such as the intensively managed grassland in this study. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú)
Mergili M, Emmer A, Juřicová A, Cochachin A, Fischer JT, Huggel C and Pudasaini SP
Changing high-mountain environments are characterized by destabilizing ice, rock or debris slopes connected to evolving glacial lakes. Such configurations may lead to potentially devastating sequences of mass movements (process chains or cascades). Computer simulations are supposed to assist in anticipating the possible consequences of such phenomena in order to reduce the losses. The present study explores the potential of the novel computational tool r.avaflow for simulating complex process chains. r.avaflow employs an enhanced version of the Pudasaini (2012) general two-phase mass flow model, allowing consideration of the interactions between solid and fluid components of the flow. We back-calculate an event that occurred in 2012 when a landslide from a moraine slope triggered a multi-lake outburst flood in the Artizón and Santa Cruz valleys, Cordillera Blanca, Peru, involving four lakes and a substantial amount of entrained debris along the path. The documented and reconstructed flow patterns are reproduced in a largely satisfactory way in the sense of empirical adequacy. However, small variations in the uncertain parameters can fundamentally influence the behaviour of the process chain through threshold effects and positive feedbacks. Forward simulations of possible future cascading events will rely on more comprehensive case and parameter studies, but particularly on the development of appropriate strategies for decision-making based on uncertain simulation results. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
Stream channel erosion in a rapidly urbanizing region of the US-Mexico border: documenting the importance of channel hardpoints with Structure-from-Motion photogrammetry
Taniguchi KT, Biggs TW, Langendoen EJ, Castillo C, Gudino-Elizondo N, Yuan Y and Liden D
Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure-from-Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100-300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross-sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross-sections. Channel erosion due to urbanization accounts for approximately 25-40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one-third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel.
Multi-scale relief model (MSRM): a new algorithm for the visualization of subtle topographic change of variable size in digital elevation models
Orengo HA and Petrie CA
Morphological analysis of landforms has traditionally relied on the interpretation of imagery. Although imagery provides a natural view of an area of interest (AOI) images are largely hindered by the environmental conditions at the time of image acquisition, the quality of the image and, mainly, the lack of topographical information, which is an essential factor for a correct understanding of the AOI's geomorphology. More recently digital surface models (DSMs) have been incorporated into the analytical toolbox of geomorphologists. These are usually high-resolution models derived from digital photogrammetric processes or LiDAR data. However, these are restricted to relatively small areas and are expensive or complex to acquire, which limits widespread implementation. In this paper, we present the multi-scale relief model (MSRM), which is a new algorithm for the visual interpretation of landforms using DSMs. The significance of this new method lies in its capacity to extract landform morphology from both high- and low-resolution DSMs independently of the shape or scale of the landform under study. This method thus provides important advantages compared to previous approaches as it: (1) allows the use of worldwide medium resolution models, such as SRTM, ASTER GDEM, ALOS, and TanDEM-X; (2) offers an alternative to traditional photograph interpretation that does not rely on the quality of the imagery employed nor on the environmental conditions and time of its acquisition; and (3) can be easily implemented for large areas using traditional GIS/RS software. The algorithm is tested in the Sutlej-Yamuna interfluve, which is a very large low-relief alluvial plain in northwest India where 10 000 km of palaeoriver channels have been mapped using MSRM. The code, written in Google Earth Engine's implementation of JavaScript, is provided as Supporting Information for its use in any other AOI without particular technical knowledge or access to topographical data. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
A contour-based topographic model for hydrological and ecological applications
Moore ID, O'Loughlin EM and Burch GJ
A digital model for discretizing three-dimensional terrain into small irregularly shaped polygons or elements based on contour lines and their orthogonals is described. From this subdivision the model estimates a number of topographic attributes for each element including the total upslope contributing area, element area, slope, and aspect. This form of discretization of a catchment produces natural units for problems involving water flow as either a surface or subsurface flow phenomenon. The model therefore has wide potential application for representing the three-dimensionality of natural terrain and water flow processes in the fields of hydrology, sedimentology, and geomorphology. Three example applications are presented and discussed. They are the prediction of zones of surface saturation, the prediction of the distribution of potential daily solar radiation, and the prediction of zones of erosion and deposition in a catchment.