FRESHWATER BIOLOGY

What do macroinvertebrate indices measure? Stressor-specific stream macroinvertebrate indices can be confounded by other stressors
Jones JI, Lloyd CEM, Murphy JF, Arnold A, Duerdoth CP, Hawczak A, Pretty JL, Johnes PJ, Freer JE, Stirling MW, Richmond C and Collins AL
Monitoring programmes worldwide use biota to assess the "health" of water bodies. Indices based on biota are used to describe the change in status of sites over time, to identify progress against management targets and to diagnose the causes of biological degradation. A variety of numerical stressor-specific biotic indices have been developed based on the response of biota to differences in stressors among sites. Yet, it is not clear how variation in pressures within sites, over what time period, and in what combination has the greatest impact on different biotic groups. An understanding of how temporal variation in pressures influences biological assessment indices would assist in setting achievable targets and help focus catchment-scale mitigation strategies to ensure that they deliver the desired improvements in biological condition.Hydrochemical data provided by a network of high-frequency (15 or 30 min) automated monitoring stations over 3 years were matched to replicated biological data to understand the influence of spatio-temporal variation in pollution pressures on biological indices. Hydrochemical data were summarised in various ways to reflect central tendency, peaks, troughs and variation over 1-90 days before the collection of each biological sample. An objective model selection procedure was used to determine which hydrochemical determinand, and over what time period, best explained variation in the biological indices.Stressor-specific indices derived from macroinvertebrates which purportedly assess stress from low flows, excess fine sediment, nutrient enrichment, pesticides and organic pollution were significantly inter-correlated and reflected periods of low oxygen concentration, even though only one index (ASPT, average score per taxon) was designed for this purpose. Changes in community composition resulting from one stressor frequently lead to confounding effects on stressor-specific indices.Variation in ASPT was best described by dissolved oxygen calculated as Q over 10 days, suggesting that low oxygen events had most influence over this period. Longer-term effects were apparent, but were masked by recovery. Macroinvertebrate abundance was best described by Q of stream velocity over 60 days, suggesting a slower recovery in numbers than in the community trait reflected by ASPT.Although use of ASPT was supported, we recommend that additional independent evidence should be used to corroborate any conclusions regarding the causes of degradation drawn from the other stressor-specific indices. The use of such stressor-specific indices alone risks the mistargeting of management strategies if the putative stressor-index approach is taken to be more reliable than the results herein suggest.
Hydrology is a major influence on amphibian abundance in a large European floodplain
Hamer AJ, Czeglédi I, Gál B, Sály P, Szalóky Z, Preiszner B and Erős T
River-floodplain ecosystems play a crucial role in connecting landscape patches through hydrological connectivity, but they are among the most threatened ecosystems. Floodplains provide important habitat for amphibians by connecting aquatic and terrestrial habitats. Modifications to floodplain hydrology can impact amphibian communities, yet few studies have examined amphibian metacommunities in floodplain wetlands.In this study, we assessed patterns in amphibian breeding abundance in one of the largest floodplains of the Danube River, Hungary, relative to hydrological connectivity and multi-scale variables at 30 waterbody sites. Our aim was to determine whether these patterns aligned with the pond-permanence gradient hypothesis, where breeding amphibian abundance is predicted to be highest in ephemeral ponds without large predatory fish. We used Bayesian hierarchical modelling to estimate multi-species abundance from repeated survey (count) data collected over one breeding season.We detected the eggs and larvae of four amphibian species. The best model of abundance included covariates describing two principal component axes associated with waterbody hydrology and landscape composition within a 500-m radius of a site. There was a positive relationship between mean community abundance at a site and hydrological disconnection from the main river channel; however, the common toad () was associated with hydrologically connected waterbodies. There was a positive relationship between mean community abundance and a high proportion of forest cover and low cover of agricultural land within a 500-m radius around a site, although this relationship was clear for only two species. There was no support for models containing the number of large predatory fish species detected at a site.Although our results showed that amphibian abundance declined with hydrological connectivity, based on model selection we could not ascribe this relationship to an increased number of large predatory fish species detected in waterbodies close to the main river channel. Differences in life history and habitat requirements are likely to have explained interspecific responses to hydrological connectivity. Our results underscore the importance of addressing amphibian abundance at multiple spatial scales in floodplain wetlands, as landscape composition partly explained patterns in abundance.Application of multi-species abundance modelling allowed us to investigate environmental relationships for common and infrequently detected species. Habitat restoration programmes in floodplains should provide waterbodies disconnected from main river channels as potential amphibian breeding sites and protect or restore forest as terrestrial habitat.
Understanding the effects of phosphorus on diatom richness in rivers and streams using taxon-environment relationships
Yuan LL, Mitchell RM, Pollard AI, Nietch CT, Pilgrim EM and Smucker NJ
Changes in phosphorus concentrations affect periphytic diatom composition in streams, yet we rarely observe strong relationships between diatom richness and phosphorus. In contrast, changes in conductivity are strongly associated with differences in both diatom composition and richness. We hypothesised that we could better understand the mechanisms that control the phosphorus-richness relationship by examining relationships between phosphorus and the occurrence of individual diatom taxa, comparing these with relationships between conductivity and taxon occurrence, and documenting how niche breadths of taxa affect richness patterns. We estimated relationships between phosphorus and taxon occurrence using DNA metabarcoding data of diatoms collected from 1,811 sites distributed across the conterminous U.S.A. and contrasted patterns in these relationships with those between conductivity and taxon occurrence. The distribution of taxon optima for phosphorus was bimodal, with most optima located at either the maximum or minimum observed phosphorus concentration. The distribution of taxon optima for conductivity was unimodal. Niche breadths of taxa for phosphorus and for conductivity both generally increased with optimum values. The distribution of conductivity optima gave rise to a prominent hump-shaped relationship between richness and conductivity. The relationship between richness and phosphorus was also slightly hump-shaped, but this relationship would not be expected from the bimodal distribution of optima. Instead, we determined that broad niche breadths caused the hump-shaped relationship between richness and phosphorus. Our results highlight the nuanced effects that increased P loadings exert on diatom assemblages in rivers and streams and identify reasons that weak relationships between taxon richness and increased phosphorus have been observed. These findings allow us to better describe how excess phosphorus and subsets of taxa and their niche breadths contribute to patterns of taxa richness in diatom assemblages, and to improve the tools used to manage phosphorus pollution.
Chytrids enhance fitness by selectively retained chytrid-synthesised stearidonic acid and conversion of short-chain to long-chain polyunsaturated fatty acids
Abonyi A, Rasconi S, Ptacnik R, Pilecky M and Kainz MJ
Chytrid fungal parasites convert dietary energy and essential dietary molecules, such as long-chain (LC) polyunsaturated fatty acids (PUFA), from inedible algal/cyanobacteria hosts into edible zoospores. How the improved biochemical PUFA composition of chytrid-infected diet may extend to zooplankton, linking diet quality to consumer fitness, remains unexplored.Here, we assessed the trophic role of chytrids in supporting dietary energy and PUFA requirements of the crustacean zooplankton , when feeding on the filamentous cyanobacterium .Only feeding on chytrid-infected reproduced successfully and had significantly higher survival and growth rates compared with feeding on the sole diet. While the presence of chytrids resulted in a two-fold increase of carbon ingested by , carbon assimilation increased by a factor of four, clearly indicating enhanced carbon transfer efficiency with chytrid presence.Bulk carbon ( C) and nitrogen ( N) stable isotopes did not indicate any treatment-specific dietary effects on , nor differences in trophic position among diet sources and the consumer. Compound-specific carbon isotopes of fatty acids ( C), however, revealed that chytrids bioconverted short-chain to LC-PUFA, making it available for Chytrids synthesised the ω-3 PUFA stearidonic acid , which was selectively retained by . Values of C demonstrated that also bioconverted short-chain to LC-PUFA.We provide isotopic evidence that chytrids improved the dietary provision of LC-PUFA for and enhanced their fitness. We argue for the existence of a positive feedback loop between enhanced growth and herbivory in response to chytrid-mediated improved diet quality. Chytrids upgrade carbon from the primary producer and facilitate energy and PUFA transfer to primary consumers, potentially also benefitting upper trophic levels of pelagic food webs.
Abiotic and biotic correlates of the occurrence, extent and cover of invasive aquatic
Crane K, Kregting L, Coughlan NE, Cuthbert RN, Ricciardi A, MacIsaac HJ, Dick JTA and Reid N
Biological invasions, especially invasive alien aquatic plants, are a major and growing ecological and socioeconomic problem worldwide. Freshwater systems are particularly vulnerable to invasion, where impacts of invasive alien species can damage ecological structure and function. Identifying abiotic and biotic factors that mediate successful invasions is a management priority. Our aim was to determine the environmental correlates of ; a globally significant invasive aquatic species. presence/absence (occurrence), extent (patch area) and percentage cover (density) was visually assessed from a boat throughout Lough Erne (approximately 144 km), County Fermanagh, Northern Ireland during the active summer growth season (July-September). In addition, substrate type and zebra mussel occurrence was recorded. Fourteen water chemistry variables were collected monthly from 12 recording stations throughout the lake during the 9 years before the survey to spatially interpolate values and establish temporal trajectories in their change. Shoreline land use was derived from CORINE land cover maps. Environmental associations between , substrate, , water chemistry and land use were assessed. occurrence was positively associated with water conductivity, alkalinity, suspended solids, phosphorus (both total and soluble) and chlorophyll- concentrations, but negatively associated with pH and total oxidised nitrogen. patch extent and proportional cover were positively associated, to varying degrees, with the presence of , biological oxygen demand, water clarity and soft substrate, but negatively associated with urban development and ammonium. displayed high levels of phenotypic plasticity in response to environmental variation, allowing it to adapt to a wide range of conditions and potentially gain competitive advantage over native or other invasive macrophytes.It is evident that multiple abiotic and biotic factors, including facilitation by co-occurring invasive dreissenid mussels, interact to influence the distribution and abundance of . Thus, it is necessary to consider a more comprehensive environmental context when planning management strategies.
Phenotypic and molecular responses of copepods to UV radiation stress in a clear versus a glacially turbid lake
Tartarotti B, Sommaruga R and Saul N
Zooplankton are exposed to multiple environmental stressors in alpine lakes. However, phenotypic and molecular responses of copepods to different environmental conditions, including ultraviolet radiation (UVR), are still not fully understood. Here, we tested whether gene expression patterns vary within the same species, , but in populations from different environments (a clear vs. a glacially turbid lake) when exposed to UVR. Moreover, we wanted to examine potential seasonal variation (summer vs. autumn) in copepod gene expression.We measured photoprotective compounds (mycosporine-like amino acids and carotenoids) and antioxidant capacities in two copepod populations and studied gene expression of heat shock proteins (s) as indicator of stress after UVR exposure in the laboratory.Compared with the copepod population from the clear lake, the population from the turbid lake showed lower mycosporine-like amino acid, but higher carotenoid concentrations that decreased over the season. Antioxidant capacities (both lipophilic and hydrophilic) were higher in autumn than in summer. The and genes were constitutively expressed, regardless of habitat origin and season, while was upregulated after exposure to UVR (up to 2.8-fold change). We observed stronger upregulation of gene expression in autumn for the turbid and summer for the clear lake, with highest gene expression 24 hr post-UVR exposure (up to 10.2-fold change in the turbid and 3.9-fold in the clear lake).We show how variation in phenotypic traits modulates gene expression patterns, specifically gene expression. Rapidly induced defences against cellular stress may improve survival in harsh environments such as alpine lakes, especially since these sensitive ecosystems may experience further changes in the future.
Freshwater snails and the green algae are probably not hosts of
McMahon TA, Nordheim CL and Prokopiak DM
1. (Bd) is a pathogenic fungus that has devastated amphibian populations globally by causing the disease chytridiomycosis. is capable of infecting non-amphibian hosts, such as crayfish, and has been detected on reptile and bird species. Given the taxonomic heterogeneity in the known hosts and vectors of Bd, it is likely that there is a diversity of undiscovered non-amphibian hosts of the fungus. 2. Here, we investigated whether Bd could survive on freshwater snails () and algae. We exposed small and large snails ( = 15 snails/size category), algae ( = 5), and artificial spring water controls (ASW; = 5) to live Bd. We also maintained Bd-free control snails ( = 5 snails/size category) in ASW. All treatments were maintained for 7 weeks at 18°C. Mortality was checked three times a week, snails were weighed every 2 weeks, and 7 weeks after exposure, the snails, algae, and water were tested for Bd using quantitative polymerase chain reaction. 3. We found that Bd did not grow on live snails, algae, or ASW long term. Additionally, live snails ( = 20) collected from Bd-positive ponds in California were all negative for Bd, as well. Given that we found no Bd on the experimentally exposed or field swabbed snails, snails are probably not a reservoir host of Bd. 4. While negative results are often not published, Bd is one of the deadliest pathogens on earth; it is essential to know what is and is not capable of maintaining Bd for well-designed disease models.
Low temporal dynamics of mycosporine-like amino acids in benthic cyanobacteria from an alpine lake
Werner N, Orfanoudaki M, Hartmann A, Ganzera M and Sommaruga R
Cyanobacteria are one of the oldest organisms on Earth and they originated at a time when damaging ultraviolet (UV) C radiation still reached the surface. Their long evolution led to several adaptations to avoid deleterious effects caused by exposure to solar UV radiation. Synthesis of sunscreen substances, such as mycosporine-like amino acids (MAAs), allows them to photosynthesise with reduced risk of cell damage. The interplay of solar UV radiation and MAAs is well documented for cyanobacteria in the plankton realm, but little is known for those in the benthic realm, particularly of clear alpine lakes.Here, we assessed the temporal dynamics of MAAs in the benthic algal community of one clear alpine lake dominated by cyanobacteria during the ice-free season and along a depth gradient using state-of-the-art analytical methods (high-performance liquid chromatography, nuclear magnetic resonance, liquid chromatography-mass spectrometry). We differentiated between the epilithic cyanobacterial community and the overlying loosely attached filamentous cyanobacteria, as we expected they will have an important shielding/shading effect on the former. We hypothesised that in contrast to the case of phytoplankton, benthic cyanobacteria will show less pronounced temporal changes in MAAs concentration in response to changes in solar UV exposure.Three UV-absorbing substances were present in both types of communities, whereby all were unknown. The chemical structure of the dominant unknown substance (maximum absorption at 334 nm) resulted in the identification of a novel MAA that we named aplysiapalythine-D for its similarity to the previously described aplysiapalythine-C.Chlorophyll--specific MAA concentrations for epilithic and filamentous cyanobacteria showed a significant decrease with depth, although only traces were found in the former community. The temporal dynamics in MAA concentrations of filamentous cyanobacteria showed no significant variations during the ice-free season.Our result on the low temporal MAA dynamics agrees with the reduced growth rates of benthic cyanobacteria reported for cold ecosystems. The permanent presence of this community, which is adapted to the high UV levels characteristic of clear alpine lakes, probably represents the most important primary producers of these ecosystems.
Benthic habitat is an integral part of freshwater ecology
Stockwell JD, O'Malley BP, Hansson S, Chapina RJ, Rudstam LG and Weidel BC
Diel vertical migration (DVM) is common in aquatic organisms. The trade-off between reduced predation risk in deeper, darker waters during the day and increased foraging opportunities closer to the surface at night is a leading hypothesis for DVM behaviour.Diel vertical migration behaviour has dominated research and assessment frameworks for , an omnivorous mid-trophic level macroinvertebrate that exhibits strong DVM between benthic and pelagic habitats and plays key roles in many deep lake ecosystems. However, some historical literature and more recent evidence indicate that mysids also remain on the bottom at night, counter to expectations of DVM.We surveyed the freshwater literature using Web of Science (WoS; 1945-2019) to quantify the frequency of studies on demographics, diets, and feeding experiments that considered, assessed, or included that did not migrate vertically but remained in benthic habitats. We supplemented our WoS survey with literature searches for relevant papers published prior to 1945, journal articles and theses not listed in WoS, and additional references known to the authors but missing from WoS (e.g. only 47% of the papers used to evaluate in situ diets were identified by WoS).Results from the survey suggest that relatively little attention has been paid to the benthic components of ecology. Moreover, the literature suggests that reliance on sampling protocols using pelagic gear at night provides an incomplete picture of populations and their role in ecosystem structure and function.We summarise current knowledge of DVM and provide an expanded framework that more fully considers the role of benthic habitat. Acknowledging benthic habitat as an integral part of ecology will enable research to better understand the role of in food web processes.
Effects of terrigenous organic substrates and additional phosphorus on bacterioplankton metabolism and exoenzyme stoichiometry
Yeh TC, Krennmayr K, Liao CS, Ejarque E, Schomakers J, Huang JC, Zehetner F and Hein T
Bamboo, as a pioneer vegetation, often forms forests on bare lands after catastrophic landslides. Compared to evergreen forest soil, bamboo forest soil is much more labile, with a higher percentage of microbially derived organic carbon (OC), lower molecular weight, and lower humic acid content. We hypothesised that different terrigenous organic matter (tOM) sources with varying lability and phosphorus (P) availability select for bacterioplankton with distinct metabolic pathways.We incubated natural bacterioplankton assemblages with tOM leached from bamboo forest soil (BOM) and evergreen forest soil (EOM) and compared these to a lake water control. To test if microbial metabolism would be limited by OC or P availability of each tOM treatment, we used acetate as an extra labile OC source and phosphate as an inorganic P source. Bacterial metabolism was measured by analysing respiration via O consumption and production via tritiated thymidine (TdR) assimilation.Bacterioplankton metabolism is limited by the availability of P in BOM substrates. When using BOM, bacteria had higher enzymatic activities for phosphatase. The nutrients required for bacterial biomass seemed to be derived from organic matter. Under BOM treatment, bacterial production (BP) (0.92 ± 0.13 μg C L hr) and cell specific TdR assimilation rates (0.015 ± 0.002 10 M TdR cell hr) were low. Adding P enhanced BP (BOM 1.52 ± 0.31 and BOM 2.25 ± 0.37 μg C L hr) while acetate addition had no significant effect on BOM treatment.This indicated that the bacteria switched to using added inorganic P to respire a P-limited BOM substrate, which increased total BP and abundance, resulting in even more active respiration and lower growth efficiency. We also found higher activities for chitin-degrading enzyme β-N-acetylglucosaminidase, which is associated with N mining from aminosaccharides.Microbes using EOM, however, did not change metabolic strategies with additional acetate or/and inorganic P. This is due to higher concentrations of organic P in EOM substrates and the presence of inorganic N in the EOM leachates an alternative nutrient source. Bacteria produced β-glucosidase and leucyl-aminopeptidase in order to utilise the humic substances, which sustained greater bacterial abundance, higher BP (2.64 ± 0.39 μg C L hr), and lower cell-specific respiration. This yielded a much higher bacterial growth efficiency (15 ± 9.2%) than the lake water control.Our study demonstrated the aquatic metabolic discrepancy between tOM of different forest types. Bacterioplankton in BOM and EOM exhibit distinct metabolic responses. Bacterial metabolic strategy when using BOM implied that the supposedly stabilised biomass OM might be efficiently used by aquatic bacterioplankton. As the labile and nutrient-deficient BOM is more susceptible to the influence of additional nutrients, fertiliser residues in bamboo forest catchments might have a stronger effect on aquatic bacterial metabolic pathways. Thus, it is important to take tOM differences into consideration when building models to estimate soil carbon turnover rates along a terrestrial-aquatic continuum.
Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation
Wood SA, Kelly L, Bouma-Gregson K, Humbert JF, Laughinghouse HD, Lazorchak J, McAllister T, McQueen A, Pokrzywinski K, Puddick J, Quiblier C, Reitz LA, Ryan K, Vadeboncoeur Y, Zastepa A and Davis TW
1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.
Preferential retention of algal carbon in benthic invertebrates: Stable isotope and fatty acid evidence from an outdoor flume experiment
Kühmayer T, Guo F, Ebm N, Battin TJ, Brett MT, Bunn SE, Fry B and Kainz MJ
According to the River Continuum Concept, headwater streams are richer in allochthonous (e.g. terrestrial leaves) than autochthonous (e.g. algae) sources of organic matter for consumers. However, compared to algae, leaf litter is of lower food quality, particularly ω-3 polyunsaturated fatty acids (n-3 PUFA), and would constrain the somatic growth, maintenance, and reproduction of stream invertebrates. It may be thus assumed that shredders, such as , receive lower quality diets than grazers, e.g. , that typically feed on algae.The objective of this study was to assess the provision of dietary PUFA from leaf litter and algae to the shredder and the grazer . Three different diets (algae, terrestrial leaves, and an algae-leaf litter mix) were supplied to these macroinvertebrates in a flume experiment for 2 weeks. To differentiate how diet sources were retained in these consumers, algae were isotopically labelled with C.Both consumers became enriched with C in all treatments, demonstrating that both assimilated algae. For , n-3 PUFA increased, whereas n-6 PUFA stayed constant. By contrast, the n-3 PUFA content of decreased as a consequence of declining algal supply.Results from compound-specific stable isotope analysis provided evidence that the long-chain n-3 PUFA eicosapentaenoic acid (EPA) in both consumers was more enriched in C than the short-chain n-3 PUFA α-linolenic acid, suggesting that EPA was taken up directly from algae and not from heterotrophic biofilms on leaf litter. Both consumers depended on algae as their carbon and EPA source and retained their EPA from high-quality algae.
Anemochory of diapausing stages of microinvertebrates in North American drylands
Rivas JA, Schröder T, Gill TE, Wallace RL and Walsh EJ
1. Dry, ephemeral, desert wetlands are major sources of windblown sediment, as well as repositories for diapausing stages (propagules) of aquatic invertebrates. Zooplankton propagules are of the same size range as sand and dust grains. They can be deflated and transported in windstorm events. This study provides the evidence that dust storms aid in dispersal of microinvertebrate propagules via anemochory (aeolian transport). 2. We monitored 91 windstorms at six sites in the southwestern U.S. over a 17-year period. The primary study site was located in El Paso, Texas in the northern Chihuahuan Desert. Additional samples were collected from the Southern High Plains region. Dust carried by these events was collected and rehydrated to hatch viable propagules transported with it. 3. Using samples collected over a six-year period, 21 m above the ground which included 59 storm events, we tested the hypothesis that transport of propagules is correlated with storm intensity by monitoring meteorological conditions such as storm duration, wind direction, wind speed, and PM (fine dust concentration). An air quality monitoring site located adjacent to the dust samplers provided quantitative hourly measurements. 4. Rehydration results from all events showed that ciliates were found in 92% of the samples, rotifers in 81%, branchiopods in 29%, ostracods in 4%, nematodes in 13%, gastrotrichs in 16%, and tardigrades in 3%. Overall, four bdelloid and 11 monogonont rotifer species were identified from rehydrated windblown dust samples. 5. PCA results indicated gastrotrichs, branchiopods, nematodes, tardigrades, and monogonont rotifer occurrence positively correlated with PM and dust event duration. Bdelloid rotifers were correlated with amount of sediment deposited. NMDS showed a significant relationship between PM and occurrence of some taxa. Zero-inflated, general linear models with mixed-effects indicated significant relationships with bdelloid and nematode transport and PM. 6. Thus, windstorms with high particulate matter concentration and long duration are more likely to transport microinvertebrate diapausing stages in drylands.
Urbanisation alters fatty acids in stream food webs
Whorley SB, Smucker NJ, Kuhn A and Wehr JD
Fatty acids are essential to macroinvertebrate growth and reproduction and can indicate food web structure and nutritional quality of basal resources. However, broad-scale examinations of how catchment land cover and associated stressors affect the proportions of fatty acids (FAs) in stream food webs are few.Here, we: (1) examine relationships among proportions of FAs among benthic periphyton and macroinvertebrate collector/gatherers, shredders, and predators; and (2) test if relationships between periphytic and macroinvertebrate FAs were altered due to the intensity of urban development in catchments.Proportions of the ≥20-C eicosapentaenoic acid (EPA 20:5ω3), arachidonic acid (ARA 20:4ω6), and docosahexaenoic acid (22:6ω3) indicated collector/gatherers had a diet richer in periphyton than in shredders, which had significantly lower proportions of these FAs. Collector/gatherers were in turn likely to be high-quality sources of ω3 and ≥ 20-C FAs for predators, which also had significantly greater EPA and ARA proportions than those in shredders. Linoleic (18:2ω6) and α-linolenic acid (18:3ω3) comprised the greatest proportions of FAs in shredders, which suggested a diet dominated by leaf litter and associated hyphomycetes.As catchment urbanisation increased, proportions of total ω3 FAs and EPA in periphyton were significantly greater. This pattern also was seen through macroinvertebrate consumers and predators, given that proportions of these FAs in macroinvertebrates also were significantly correlated with factors associated with catchment urbanisation. The significant increase in total ω3 FAs and EPA proportions within shredders indicated that periphyton growth, and their FAs, increased on leaf litter, probably due to greater nutrient concentrations associated with catchment urbanisation. Proportions of total ω6 FAs in biota were not significantly correlated with factors associated with urban development, which could indicate that they were of sufficient abundance for consumers regardless of urban intensity or possible changes in their sources.Our study provides an informative first step that identified notable differences in proportions of FAs among macroinvertebrates in urban streams and an increase in proportions of total ω3 FAs and EPA in periphyton, consumers, and predators as catchment urbanisation increases. Identifying how FA relationships within food webs change in response to catchment alterations and stressors could inform land use and management decisions by linking environmental changes to measures important to ecosystem outcomes.
Drought attenuates the impact of fish on aquatic macroinvertebrate richness and community composition
McDevitt-Galles T and Johnson PTJ
Identifying ecological niche filters that shape species community composition is a critical first step in understanding the relative contributions of deterministic and stochastic processes in structuring communities. Systems with harsh ecological filters often have a more deterministic basis to community structure. Although these filters are often treated as static, investigations into their stability through time are rare, particularly in combination with extreme forms of environmental change such as drought.We examined the richness and composition of aquatic macroinvertebrate communities from 36 ponds over four years during the onset of a megadrought to answer the following questions: (1) what are the relative influences of non-native fish presence and pond permanence in structuring communities? And (2) how do the magnitudes of such filters vary through time?As predicted, fish presence had a strong, negative effect on both alpha and gamma diversity, lowering average invertebrate richness in pond communities by 23%. However, fish presence and sample year interacted to determine both richness and taxa composition: as drought conditions intensified, the effects of fish weakened such that there were no differences in the richness or composition between fish and fishless ponds by the later sampling years. Moreover, large-bodied invertebrate groups - often considered highly vulnerable to fish predation - were detected within fish-occupied sites by the final year of the study.This pattern was associated with progressive decreases in precipitation due to a severe drought in California, emphasizing the importance of exogenous, regional factors in moderating the strength of biotic niche filters on local community structure over time. Given that all detected fish species were non-native, these results also have application to understanding and forecasting changes in the diversity of native insects and other aquatic invertebrates.
The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage
Tornabene BJ, Blaustein AR, Briggs CJ, Calhoun DM, Johnson PTJ, McDevitt-Galles T, Rohr JR and Hoverman JT
A fundamental goal of disease ecology is to determine the landscape and environmental processes that drive disease dynamics at different biological levels to guide management and conservation. Although ranaviruses (family ) are emerging amphibian pathogens, few studies have conducted comprehensive field surveys to assess potential drivers of ranavirus disease dynamics.We examined the factors underlying patterns in site-level ranavirus presence and individual-level ranavirus infection in 76 ponds and 1,088 individuals representing 5 amphibian species within the East Bay region of California.Based on a competing-model approach followed by variance partitioning, landscape and biotic variables explained the most variation in site-level presence. However, biotic and individual-level variables explained the most variation in individual-level infection.Distance to nearest ranavirus-infected pond (the landscape factor) was more important than biotic factors at the site-level; however, biotic factors were most influential at the individual-level. At the site level, the probability of ranavirus presence correlated negatively with distance to nearest ranavirus-positive pond, suggesting that the movement of water or mobile taxa (e.g., adult amphibians, birds, reptiles) may facilitate the movement of ranavirus between ponds and across the landscape.Taxonomic richness associated positively with ranavirus presence at the site-level, but vertebrate richness associated negatively with infection prevalence in the host population. This might reflect the contrasting influences of diversity on pathogen colonization versus transmission among hosts.Amphibian host species differed in their likelihood of ranavirus infection: American bullfrogs () had the weakest association with infection while rough-skinned newts () had the strongest. After accounting for host species effects, hosts with greater snout-vent length had a lower probability of infection.Our study demonstrates the array of landscape, environmental, and individual-level factors associated with ranavirus epidemiology. Moreover, our study helps illustrate that the importance of these factors varies with biological level.
Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions
Chaparro G, Horváth Z, O'Farrell I, Ptacnik R and Hein T
Species diversity is affected by processes operating at multiple spatial scales, although the most relevant scales that contribute to compositional variation and the temporal shifts of the involved mechanisms remain poorly explored. We studied spatial patterns of phytoplankton, rotifers and microcrustacean diversity across scales in a river floodplain system of the Danube in Austria under contrasting hydrological conditions (post-flood versus low water level).The species turnover between water sections (β2) and between wetlands (β3) was the major components of regional diversity for all studied groups, with species turnover between habitats (β1) as a minor contributor. β1 diversity and β2 diversity were lower than expected by chance in most cases, suggesting that communities are more homogeneous than expected at these scales. β3 diversity was higher than expected by chance in many cases, indicating more distinct communities at the wetland level. Patterns were highly similar under different hydrological conditions, indicating no major immediate effect of flood events.Local environmental and spatial factors were similarly important in structuring phytoplankton, rotifer and microcrustacean communities in both hydrological conditions. Relevant environmental factors were spatially structured in post-flood conditions especially between sections, suggesting flood-driven homogenisation within the wetlands. Under low water level, spatial structuring of environment decreased and pure environmental factors gained relevance for phytoplankton and rotifers.Our results suggest that although β2 diversity between water sections is a major component of regional diversity, long-term spatial processes responding to connectivity across the wetland structure phytoplankton, rotifer and microcrustacean communities. Aquatic sections within the limited spatial extent of the remaining floodplain areas appear more homogeneous than expected probably due to flood recurrence over the years.These results highlight that adequate planning of restoration and conservation strategies of floodplain wetlands should consider environmental heterogeneity together with long-term spatial processes.
Urban infrastructure influences dissolved organic matter quality and bacterial metabolism in an urban stream network
Arango CP, Beaulieu JJ, Fritz KM, Hill BH, Elonen CM, Pennino MJ, Mayer PM, Kaushal SS and Balz AD
Urban streams are degraded by a suite of factors, including burial beneath urban infrastructure, such as roads or parking lots, which eliminates light and reduces direct organic matter inputs to streams from riparian zones. These changes to stream metabolism and terrestrial carbon contribution will likely have consequences for organic matter metabolism by microbes and dissolved organic matter (DOM) use patterns in streams. Respiration by heterotrophic biofilms drives the nitrogen and phosphorus cycles, but we lack a clear understanding of how stream burial and seasonality affect microbial carbon use. We studied seasonal changes (autumn, spring, and summer) in organic matter metabolism by microbial communities in open and buried reaches of three urban streams in Cincinnati, OH. We characterised DOM quality using fluorescence spectroscopy and extracellular enzyme profiles, and we measured the respiration response to carbon supplements in nutrient diffusing substrata (NDS). We hypothesised: (1) that algal production would lead to higher quality DOM in spring compared to other seasons and in open compared to buried reaches, (2) lower reliance of microbial respiration on recalcitrant carbon sources in spring and in open reaches, and (3) that microbial respiration would increase in response to added carbon in autumn and in buried reaches. Several fluorescence metrics showed higher quality DOM in spring than autumn, but only the metric of recalcitrant humic compounds varied by reach, with more humic DOM in open compared to buried reaches. This likely reflected open reaches as an avenue for direct terrestrial inputs from the riparian zone. Extracellular enzyme assays showed that microbes in buried reaches allocated more effort to degrade recalcitrant carbon sources, consistent with a lack of labile carbon compounds due to limited photosynthesis. Nitrogen acquisition enzymes were highest in autumn coincident with riparian leaf inputs to the streams. Buried and open reaches both responded more strongly to added carbon in autumn when terrestrial leaf inputs dominated compared to the spring when vernal algal blooms were pronounced. Our data show that stream burial affects the quality of the DOM pool with consequences for how microbes use those carbon sources, and that heterotrophic respiration increased on carbon-supplemented NDS in buried and open stream reaches in both seasons. Different carbon quality and use patterns suggest that urban stream infrastructure affects spatiotemporal patterns of bacterial respiration, with likely consequences for nitrogen and/or phosphorus cycling given that carbon use drives other biogeochemical cycles. Management actions that increase light to buried streams could shift the balance between allochthonous and autochthonous DOM in urban streams with consequences for spatiotemporal patterns in bacterial metabolism.
Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency
Kammerlander B, Koinig KA, Rott E, Sommaruga R, Tartarotti B, Trattner F and Sonntag B
Climate warming is accelerating the retreat of glaciers and recently, many 'new' glacial turbid lakes have been created. In the course of time, the loss of the hydrological connectivity to a glacier causes, however, changes in their water turbidity and turns these ecosystems into clear ones.To understand potential differences in the food-web structure between glacier-fed turbid and clear alpine lakes, we sampled ciliates, phyto-, bacterio- and zooplankton in one clear and one glacial turbid alpine lake, and measured key physicochemical parameters. In particular, we focused on the ciliate community and the potential drivers for their abundance distribution.In both lakes, the zooplankton community was similar and dominated by the copepod and rotifers including , , and . The phytoplankton community structure differed and it was dominated by the planktonic diatom and the cryptophyte alga in the glacial turbid lake, while chrysophytes and dinoflagellates were predominant in the clear one.Ciliate abundance and richness were higher in the glacial turbid lake (∼4000-27 800 Ind L, up to 29 species) than in the clear lake (∼570-7150 Ind L, up to eight species). The dominant species were , cf. , cf. and cf. . The same species dominated in both lakes, except for cf. and some particle-associated ciliates, which occurred exclusively in the glacial turbid lake. The relative underwater solar irradiance (i.e. percentage of PAR and UVR at depth) significantly explained their abundance distribution pattern, especially in the clear water lake. In the glacial turbid lake, the abundance of the dominating ciliate taxa was mainly explained by the presence of predatory zooplankton.Our results revealed an unexpected high abundance and richness of protists (algae, ciliates) in the glacial turbid lake. This type of lake likely offers more suitable environmental conditions and resource niches for protists than the clear and highly UV transparent lake.
Effects of nutrient supplementation on host-pathogen dynamics of the amphibian chytrid fungus: a community approach
Buck JC, Rohr JR and Blaustein AR
Anthropogenic stressors may influence hosts and their pathogens directly or may alter host-pathogen dynamics indirectly through interactions with other species. For example, in aquatic ecosystems, eutrophication may be associated with increased or decreased disease risk. Conversely, pathogens can influence community structure and function and are increasingly recognised as important members of the ecological communities in which they exist.In outdoor mesocosms, we experimentally manipulated nutrients (nitrogen and phosphorus) and the presence of a fungal pathogen, (Bd), and examined the effects on Bd abundance on larval amphibian hosts (: Hylidae), amphibian traits and community dynamics. We predicted that resource supplementation would mitigate negative effects of Bd on tadpole growth and development and that indirect effects of treatments would propagate through the community.Nutrient additions caused changes in algal growth, which benefitted tadpoles through increased mass, development and survival. Bd-exposed tadpoles metamorphosed sooner than unexposed individuals, but their mass at metamorphosis was not affected by Bd exposure. We detected additive rather than interactive effects of nutrient supplementation and Bd in this experiment.Nutrient supplementation was not a significant predictor of infection load of larval amphibians. However, a structural equation model revealed that resource supplementation and exposure of amphibians to Bd altered the structure of the aquatic community. This is the first demonstration that sublethal effects of Bd on amphibians can alter aquatic community dynamics.
Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers
Burian A, Kainz MJ, Schagerl M and Yasindi A
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, and , were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δC and 1.5‰ in δN). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium , which frequently forms blooms in African soda lakes, was an important food source for the larger-sized (48%), whereas it was hardly ingested by . Overall, . was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria.