Advancing epileptic seizure recognition through bidirectional LSTM networks
Seizure detection in a timely and accurate manner remains a primary challenge in clinical neurology, affecting diagnosis planning and patient management. Most of the traditional methods rely on feature extraction and traditional machine learning techniques, which are not efficient in capturing the dynamic characteristics of neural signals. It is the aim of this study to address such limitations by designing a deep learning model from bidirectional Long Short-Term Memory (BiLSTM) networks in a bid to enhance epileptic seizure identification reliability and accuracy. The dataset used, drawn from Kaggle's Epileptic Seizure Recognition challenge, consists of 11,500 samples with 179 features per sample corresponding to different electroencephalogram (EEG) readings. Data preprocessing was utilized to normalize and structure the input to the deep learning model. The proposed BiLSTM model employs sophisticated architecture to leverage temporal dependency and bidirectional data flows. It incorporates multiple dense and dropout layers alongside batch normalization to enhance the capability of the model in learning from the EEG data in an efficient manner. It supports end-to-end feature learning from the raw EEG signals without the need for intensive preprocessing and feature engineering. BiLSTM model performed better than others with 98.70% accuracy on the validation set and surpassed traditional techniques. The F1-score and other statistical metrics also validated the performance of the model as the confusion matrix achieved high values for recall and precision. The results confirm the capability of bidirectional LSTM networks to better identify seizures with significant improvements over conventional practices. Apart from facilitating seizure detection in a reliable fashion, the method improves the overall field of biomedical signal processing and can also be used in real-time observation and intervention protocols.
CRISP: a correlation-filtered recursive feature elimination and integration of SMOTE pipeline for gait-based Parkinson's disease screening
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, with subtle gait changes such as reduced vertical ground-reaction forces (VGRF) often preceding motor symptoms. These gait abnormalities, measurable via wearable VGRF sensors, offer a non-invasive means for early PD detection. However, current computational approaches often suffer from redundant features and class imbalance, limiting both accuracy and generalizability.
Using noise to distinguish between system and observer effects in multimodal neuroimaging
It has become increasingly common to record brain activity simultaneously at more than one spatiotemporal scale. Here, we address a central question raised by such cross-scale datasets: do they reflect the same underlying dynamics observed in different ways, or different dynamics observed in the same way? In other words, to what extent can variation between modalities be attributed to system-level versus observer-level effects? System-level effects reflect genuine differences in neural dynamics at the resolution sampled by each device. Observer-level effects, by contrast, reflect artefactual differences introduced by the nonlinear transformations each device imposes on the signal. We demonstrate that noise, when incorporated into generative models, can help disentangle these two sources of variation.
Modeling cognition through adaptive neural synchronization: a multimodal framework using EEG, fMRI, and reinforcement learning
Understanding the cognitive process of thinking as a neural phenomenon remains a central challenge in neuroscience and computational modeling. This study addresses this challenge by presenting a biologically grounded framework that simulates adaptive decision making across cognitive states.
Editorial: AI and inverse methods for building digital twins in neuroscience
Common characteristics of variants linked to autism spectrum disorder in the WAVE regulatory complex
Six variants associated with autism spectrum disorder (ASD) abnormally activate the WASP-family Verprolin-homologous protein (WAVE) regulatory complex (WRC), a critical regulator of actin dynamics. This abnormal activation may contribute to the pathogenesis of this disorder. Using molecular dynamics (MD) simulations, we recently investigated the structural dynamics of wild-type (WT) WRC and R87C, A455P, and Q725R WRC disease-linked variants. Here, by extending MD simulations to I664M, E665K, and D724H WRC, we suggest that of the mutations weaken the interactions and affect intra-complex allosteric communication between the WAVE1 active C-terminal region (ACR) and the rest of the complex. This might contribute to an abnormal complex activation, a hallmark of WRC-linked ASD. In addition, all mutants but I664M destabilize the ACR V-helix and increase the participation of ACR in large-scale movements. All these features may also abnormally influence the inactive WRC toward a dysfunctional state. We hypothesize that small-molecule ligands counteracting these effects may help restore normal WRC regulation in ASD-related variants.
Multiscale intracranial EEG dynamics across sleep-wake states: toward memory-related processing
Sleep is known to support memory consolidation through a complex interplay of neural dynamics across multiple timescales. Using intracranial EEG (iEEG) recordings from patients undergoing clinical monitoring, we characterize spectral activity, neuronal avalanche dynamics, and temporal correlations across sleep-wake states, with a focus on their spatial distribution and potential functional relevance. We observe increased low-frequency power, larger avalanches, and enhanced long-range temporal correlations-quantified via Detrended Fluctuation Analysis-during N2 and N3 sleep. In contrast, REM sleep and wakefulness show reduced temporal persistence and fewer large-scale cascades, suggesting a shift toward more fragmented and flexible dynamics. These signatures vary across cortical regions, with distinctive patterns emerging in medial temporal and frontal areas-regions implicated in memory processing. Rather than providing direct evidence of consolidation, our results point to a functional neural landscape that may favor both stabilization and reconfiguration of internal representations during sleep. Overall, our findings highlight the utility of iEEG in revealing the multiscale spatio-temporal structure of sleep-related brain dynamics, offering insights into the physiological conditions that support memory-related processing.
Intrinsic calcium resonance and its modulation: insights from computational modeling
Hippocampal neurons generate membrane potential resonance due to specific voltage-gated ion channels, known as resonating conductances, which play crucial physiological roles. However, it is not known whether this phenomenon of resonance is limited to membrane voltage or whether it propagates through molecular signaling components such as calcium dynamics. To test this, we first utilized a single-compartment model neuron to study the oscillatory intrinsic calcium response dynamics of hippocampal model neurons, and the effects of T-type calcium channel kinetics on the voltage and calcium resonance. We found that in the presence of T-type calcium channels, our model neuron sustained a strong calcium resonance compared to voltage resonance. Unlike voltage resonance, calcium resonance frequency was largely independent of conductance magnitude, and the two types of resonance were dissociated, meaning independent of each other. In addition, we studied the effects of A-type K-channels and h-channels in conjunction with T-type calcium channels on calcium resonance, and showed that these two types of channels differentially affect calcium resonance. Finally, using a multi-compartmental morphologically realistic neuron model, we studied calcium resonance along the somato-apical dendritic axis. Using this model, we found that calcium resonance frequency remains almost constant along the somato-apical trunk for the most part, and only toward its terminal end, the calcium resonance frequency was increased. Nonetheless, this increase was lesser compared to the increase in voltage resonance frequency. Our study opens new horizons in the field of molecular resonance, and deepen our understanding concerning the effects of frequency-based neurostimulation therapies, such as transcranial alternating current stimulation (tACS).
Interleaving cortex-analog mixing improves deep non-negative matrix factorization networks
Considering biological constraints in artificial neural networks has led to dramatic improvements in performance. Nevertheless, to date, the positivity of long-range signals in the cortex has not been shown to yield improvements. While Non-negative matrix factorization (NMF) captures biological constraints of positive long-range interactions, deep convolutional neural networks with NMF modules do not match the performance of conventional neural networks (CNNs) of a similar size. This work shows that introducing intermediate modules that combine the NMF's positive activities, analogous to the processing in cortical columns, leads to improved performance on benchmark data that exceeds that of vanilla deep convolutional networks. This demonstrates that including positive long-range signaling together with local interactions of both signs in analogy to cortical hyper-columns has the potential to enhance the performance of deep networks.
Universal differential equations as a unifying modeling language for neuroscience
The rapid growth of large-scale neuroscience datasets has spurred diverse modeling strategies, ranging from mechanistic models grounded in biophysics, to phenomenological descriptions of neural dynamics, to data-driven deep neural networks (DNNs). Each approach offers distinct strengths as mechanistic models provide interpretability, phenomenological models capture emergent dynamics, and DNNs excel at predictive accuracy but this also comes with limitations when applied in isolation. Universal differential equations (UDEs) offer a unifying modeling framework that integrates these complementary approaches. By treating differential equations as parameterizable, differentiable objects that can be combined with modern deep learning techniques, UDEs enable hybrid models that balance interpretability with predictive power. We provide a systematic overview of the UDE framework, covering its mathematical foundations, training methodologies, and recent innovations. We argue that UDEs fill a critical gap between mechanistic, phenomenological, and data-driven models in neuroscience, with potential to advance applications in neural computation, neural control, neural decoding, and normative modeling in neuroscience.
Neural heterogeneity as a unifying mechanism for efficient learning in spiking neural networks
The brain is a highly diverse and heterogeneous network, yet the functional role of this neural heterogeneity remains largely unclear. Despite growing interest in neural heterogeneity, a comprehensive understanding of how it influences computation across different neural levels and learning methods is still lacking. In this work, we systematically examine the neural computation of spiking neural networks (SNNs) in three key sources of neural heterogeneity: external, network, and intrinsic heterogeneity. We evaluate their impact using three distinct learning methods, which can carry out tasks ranging from simple curve fitting to complex network reconstruction and real-world applications. Our results show that while different types of neural heterogeneity contribute in distinct ways, they consistently improve learning accuracy and robustness. These findings suggest that neural heterogeneity across multiple levels improves learning capacity and robustness of neural computation, and should be considered a core design principle in the optimization of SNNs.
Triboelectric nanogenerators for neural data interpretation: bridging multi-sensing interfaces with neuromorphic and deep learning paradigms
The rapid growth of computational neuroscience and brain-computer interface (BCI) technologies require efficient, scalable, and biologically compatible approaches for neural data acquisition and interpretation. Traditional sensors and signal processing pipelines often struggle with the high dimensionality, temporal variability, and noise inherent in neural signals, particularly in elderly populations where continuous monitoring is essential. Triboelectric nanogenerators (TENGs), as self-powered and flexible multi-sensing devices, offer a promising avenue for capturing neural-related biophysical signals such as electroencephalography (EEG), electromyography (EMG), and cardiorespiratory dynamics. Their low-power and wearable characteristics make them suitable for long-term health and neurocognitive monitoring. When combined with deep learning models-including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and spiking neural networks (SNNs)-TENG-generated signals can be efficiently decoded, enabling insights into neural states, cognitive functions, and disease progression. Furthermore, neuromorphic computing paradigms provide an energy-efficient and biologically inspired framework that naturally aligns with the event-driven characteristics of TENG outputs. This mini review highlights the convergence of TENG-based sensing, deep learning algorithms, and neuromorphic systems for neural data interpretation. We discuss recent progress, challenges, and future perspectives, with an emphasis on applications in computational neuroscience, neurorehabilitation, and elderly health care.
Time delays in computational models of neuronal and synaptic dynamics
Circuit-level modeling of prediction error computation of multi-dimensional features in voluntary actions
Predictive processing posits that the brain minimizes discrepancies between internal predictions and sensory inputs, offering a unifying account of perception, cognition, and action. In voluntary actions, it is thought to suppress self-generated sensory outcomes. Although sensory mismatch signals have been extensively investigated and modeled, mechanistic insights into the neural computation of predictive processing in voluntary actions remain limited.
Sudden restructuring of memory representations in recurrent neural networks with repeated stimulus presentations
While acquisition curves in human learning averaged at the group level display smooth, gradual changes in performance, individual learning curves across cognitive domains reveal sudden, discontinuous jumps in performance. Similar thresholding effects are a hallmark of a range of nonlinear systems which can be explored using simple, abstract models. Here, I investigate discontinuous changes in learning performance using Amari-Hopfield networks with Hebbian learning rules which are repeatedly exposed to a single stimulus. Simulations reveal that the attractor basin size for a target stimulus increases in discrete jumps rather than gradual changes with repeated stimulus exposure. The distribution of the size of these positive jumps in basin size is best approximated by a lognormal distribution, suggesting that the distribution is heavy-tailed. Examination of the transition graph structure for networks before and after basin size changes reveals that newly acquired states are often organized into hierarchically branching tree structures, and that the distribution of branch sizes is best approximated by a power law distribution. The findings suggest that even simple nonlinear network models of associative learning exhibit discontinuous changes in performance with repeated learning which mirror behavioral results observed in humans. Future work can investigate similar mechanisms in more biologically detailed network models, potentially offering insight into the network mechanisms of learning with repeated exposure or practice.
Effects of AC induced electric fields on neuronal firing sensitivity and activity patterns
Understanding how neurons respond to time-varying electric fields is essential for both basic neuroscience and the development of neuromodulation strategies. However, the mechanisms by which alternating-current induced electric fields (AC-IEF) influence neuronal sensitivity and firing remain unclear.
An AI methodology to reduce training intensity, error rates, and size of neural networks
Massive computing systems are required to train neural networks. The prodigious amount of consumed energy makes the creation of AI applications significant polluters. Despite the enormous training effort, neural network error rates limit its use for medical applications, because errors can lead to intolerable morbidity and mortality. Two reasons contribute to the excessive training requirements and high error rates; an iterative reinforcement process (tuning) that does not guarantee convergence and the deployment of neuron models only capable of realizing linearly separable switching functions. tuning procedures require tens of thousands of training iterations. In addition, linearly separable neuron models have severely limited capability; which leads to large neural nets. For seven inputs, the ratio of total possible switching functions to linearly separable switching functions is 41 octillion. Addressed here is the creation of neuron models for the application of disease diagnosis. Algorithms are described that perform direct neuron creation. This results in far fewer training steps than that of current AI systems. The design algorithms result in neurons that do not manufacture errors (hallucinations). The algorithms utilize a template to create neuron models that are capable of performing any type of switching function. The algorithms show that a neuron model capable of performing both linearly and nonlinearly separable switching functions is vastly superior to the neuron models currently being used. Included examples illustrate use of the template for determining disease diagnoses (outputs) from symptoms (inputs). The examples show convergence with a single training iteration.
Editorial: Advancements in smart diagnostics for understanding neurological behaviors and biosensing applications
Neuron synchronization analyzed through spatial-temporal attention
Neuronal synchronization refers to the temporal coordination of activity across populations of neurons, a process that underlies coherent information processing, supports the encoding of diverse sensory stimuli, and facilitates adaptive behavior in dynamic environments. Previous studies of synchronization have predominantly emphasized rate coding and pairwise interactions between neurons, which have provided valuable insights into emergent network phenomena but remain insufficient for capturing the full complexity of temporal dynamics in spike trains, particularly the interspike interval. To address this limitation, we performed neural ensemble recording in the primary olfactory center-the antennal lobe (AL) of the hawk moth -by stimulating with floral odor blends and systematically varying the concentration of an individual odorant within one of the mixtures. We then applied machine learning methods integrating modern attention mechanisms and generative normalizing flows, enabling the extraction of semi-interpretable attention weights that characterize dynamic neuronal interactions. These learned weights not only recapitulated the established principles of neuronal synchronization but also facilitated the functional classification of two major cell types in the antennal lobe (AL) [local interneurons (LNs) and projection neurons (PNs)]. Furthermore, by experimentally manipulating the excitation/inhibition balance within the circuit, our approach revealed the relationships between synchronization strength and odorant composition, providing new insight into the principles by which olfactory networks encode and integrate complex sensory inputs.
Quantitative prediction of intracellular dynamics and synaptic currents in a small neural circuit
Fitting models to experimental intracellular data is challenging. While detailed conductance-based models are difficult to train, phenomenological statistical models often fail to capture the rich intrinsic dynamics of circuits such as central pattern generators (CPGs). A recent trend has been to employ tools from deep learning to obtain data-driven models that can quantitatively learn intracellular dynamics from experimental data. This paper addresses the general questions of modeling, training, and interpreting a large class of such models in the context of estimating the dynamics of a neural circuit. In particular, we use recently introduced Recurrent Mechanistic Models to predict the dynamics of a Half-Center Oscillator (HCO), a type of CPG. We construct the HCO by interconnecting two neurons in the Stomatogastric Ganglion using the dynamic clamp experimental protocol. This allows us to gather ground truth synaptic currents, which the model is able to predict-even though these currents are not used during training. We empirically assess the speed and performance of the training methods of teacher forcing, multiple shooting, and generalized teacher forcing, which we present in a unified fashion tailored to data-driven models with explicit membrane voltage variables. From a theoretical perspective, we show that a key contraction condition in data-driven dynamics guarantees the applicability of these training methods. We also show that this condition enables the derivation of data-driven frequency-dependent conductances, making it possible to infer the excitability profile of a real neuronal circuit using a trained model.
A hierarchical Bayesian inference model for volatile multivariate exponentially distributed signals
Brain activities often follow an exponential family of distributions. The exponential distribution is the maximum entropy distribution of continuous random variables in the presence of a mean. The memoryless and peakless properties of an exponential distribution impose difficulties for data analysis methods. To estimate the rate parameter of multivariate exponential distribution from a time series of sensory inputs (i.e., observations), we constructed a hierarchical Bayesian inference model based on a variant of general hierarchical Brownian filter (GHBF). To account for the complex interactions among multivariate exponential random variables, the model estimates the second-order interaction of the rate intensity parameter in logarithmic space. Using variational Bayesian scheme, a family of closed-form and analytical update equations are introduced. These update equations also constitute a complete predictive coding framework. The simulation study shows that our model has the ability to evaluate the time-varying rate parameters and the underlying correlation structure of volatile multivariate exponentially distributed signals. The proposed hierarchical Bayesian inference model is of practical utility in analyzing high-dimensional neural activities.
