SUPERLATTICES AND MICROSTRUCTURES

A new large - Scale synthesis of magnesium oxide nanowires: Structural and antibacterial properties
Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM and El-Tantawy F
Large-scale one-dimensional magnesium oxide (MgO) nanowires with diameters of 6 nm and lengths of 10 μm have been successfully synthesized by a new facile and simple reaction. This production was performed via a microwave hydrothermal approach at low temperature growth of 180 °C for 30 min. The structure of as synthesized MgO nanowires were investigated by means of X-ray diffraction (X-ray), Fourier Transformation Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED) and Energy Dispersive X-ray (EDS). The antibacterial behavior of MgO nanowires concentration in solid media against Gram negative and Gram positive for different bacteria has been tested in details. The results show that the MgO nanowires have bacteriostatic activity against and Bacillus sp. The antibacterial activity increases with increasing MgO nanowires concentration. Furthermore, the presence of one-dimensional MgO nanowires has high antibacterial efficacy and damages the membrane wall of bacteria. Finally, this study offered the prospect of developing ultrafine nanoscale devices utilizing MgO nanowires and implementing their useful potential in biological control.
Electrodeposition of TiO-RuO-IrO coating on titanium substrate
Yousefpour M and Shokuhy A
TiO, RuO, and IrO transition metal oxides have many applications in the field of applied electrochemistry. In this work, the mixed solid solutions of TiO-RuO-IrO coatings have been electrodeposited from aqueous-unaqueous baths. Moreover, the obtained coatings have been heated in the electric furnace at 450 °C. The microstructure of coating was characterized using scanning electron microscopy (SEM) and Atomic force microscopy (AFM). In order to investigate, the chemical composition and crystalline phases of coating, X-ray analysis, energy dispersive spectroscopy (EDS) were carried out. Furthermore, anodic polarization behavior of coating was investigated. Results show that heat treated coating at 450 °C with the chemical composition of TiO/RuO/IrO with molar ratio of 70/5/25 with six layer on substrate has the highest quality, stability, adhesion strength and minimum chlorine overvoltage. However, increasing the iridium content in electrolyte enhances the coating thickness and the quality of morphology.