Method for the definitive detection of orbital angular momentum states in neutrons by spin-polarized He
A standard method to detect thermal neutrons is the nuclear interaction He(n,p)H. The spin dependence of this interaction is also the basis of a neutron spin-polarization filter using nuclear polarized He. We consider the corresponding interaction for neutrons placed in an intrinsic orbital angular momentum (OAM) state. We derive the relative polarization-dependent absorption cross sections for neutrons in an OAM state. The absorption of those neutrons results in compound states , , and . Varying the three available polarizations tests that an OAM neutron has been absorbed and probes which decay states are physically possible. We describe the energetically likely excited states of He after absorption, taking account of the odd parity of the compound state. This provides a definitive method for detecting neutron OAM states and suggests that intrinsic OAM states offer the possibility to observe new physics, including anomalous cross sections and new channels of radioactive decay.
Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N
The precision of the current generation of cosmic-ray (CR) experiments, such as AMS-02, PAMELA, CALET, and ISS-CREAM, is now reaching ≈1-3% in a wide range in energy per nucleon from GeV/nucleon to multi-TeV/nucleon. Their correct interpretation could potentially lead to discoveries of new physics and subtle effects that were unthinkable just a decade ago. However, a major obstacle in doing so is the current uncertainty in the isotopic production cross sections that can be as high as 20-50% or even larger in some cases. While there is a recently reached consensus in the astrophysics community that new measurements of cross sections are desirable, no attempt to evaluate the importance of particular reaction channels and their required precision has been made yet. It is, however, clear that it is a huge work that requires an incremental approach. The goal of this study is to provide the ranking of the isotopic cross sections contributing to the production of the most astrophysically important CR Li, Be, B, C, and N species. In this paper, we (i) rank the reaction channels by their importance for a production of a particular isotope, (ii) provide comparisons plots between the models and data used, and (iii) evaluate a generic beam time necessary to reach a 3% precision in the production cross sections pertinent to the AMS-02 experiment. This first road map may become a starting point in the planning of new measurement campaigns that could be carried out in several nuclear and/or particle physics facilities around the world. A comprehensive evaluation of other isotopes ⩽ 30 will be a subject of follow-up studies.
The C(n, 2n)C cross section from threshold to 26.5 MeV
The C(n, 2n)C cross section was measured from just below threshold to 26.5 MeV using the Pelletron accelerator at Ohio University. Monoenergetic neutrons, produced via the H(d,n)He reaction, were allowed to strike targets of polyethylene and graphite. Activation of both targets was measured by counting positron annihilations resulting from the decay of C. Annihilation gamma rays were detected, both in coincidence and singly, using back-to-back NaI detectors. The incident neutron flux was determined indirectly via H(n,p) protons elastically scattered from the polyethylene target. Previous measurements fall into upper and lower bands; the results of the present measurement are consistent with the upper band.
Half-life of Mn
The half-life of Mn was measured by serial gamma spectrometry of the 511-keV annihilation photon following decay by emission. Data were collected every 100 seconds for 100,000-230,000 seconds within each measurement ( = 4). The 511-keV incidence rate was calculated from the 511-keV spectral peak area and count duration, corrected for detector dead time and radioactive decay. Least-squares regression analysis was used to determine the half-life of Mn while accounting for the presence of background contaminants, notably Co. The result was 45.59 ± 0.07 min, which is the highest precision measurement to date and disagrees with the current Nuclear Data Sheets value by over 6.
New evidence for chemical fractionation of radioactive xenon precursors in fission chains
Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, Xe and Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.
Direct observation of spin rotation in Bragg scattering due to the spin-orbit interaction in silicon
As a neutron scatters from a target nucleus, there is a small but measurable effect caused by the interaction of the neutron's magnetic dipole moment with that of the partially screened electric field of the nucleus. This spin-orbit interaction is typically referred to as Schwinger scattering and induces a small rotation of the neutron's spin on the order of 10 rad for Bragg diffraction from silicon. In our experiment, neutrons undergo greater than 100 successive Bragg reflections from the walls of a slotted, perfect-silicon crystal to amplify the total spin rotation. A magnetic field is employed to insure constructive addition as the neutron undergoes this series of reflections. The strength of the spin-orbit interaction, which is directly proportional to the electric field, was determined by measuring the rotation of the neutron's spin-polarization vector. Our measurements show good agreement with the expected variation of this rotation with the applied magnetic field, while the magnitude of the rotation is ≈40 % larger than expected.
Experimental upper bound and theoretical expectations for parity-violating neutron spin rotation in He
Neutron spin rotation is expected from quark-quark weak interactions in the standard model, which induce weak interactions among nucleons that violate parity. We present the results from an experiment searching for the effect of parity violation via the spin rotation of polarized neutrons in a liquid He medium. The value for the neutron spin rotation angle per unit length in He, rad/m, is consistent with zero. The result agrees with the best current theoretical estimates of the size of nucleon-nucleon weak amplitudes from other experiments and with the expectations from recent theoretical approaches to weak nucleon-nucleon interactions. In this paper we review the theoretical status of parity violation in the He system and discuss details of the data analysis leading to the quoted result. Analysis tools are presented that quantify systematic uncertainties in this measurement and that are expected to be essential for future measurements.
Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of is important when making theoretical predictions. One source of that is often neglected arises from the irradiation of the nonfuel materials in reactors. The rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel contribution.
