JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS

Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial
Ippel BD, Arts B, Keizer HM and Dankers PYW
The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization. © 2019 The Authors. published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , 57, 1725-1735.
Salt concentration dependence of the mechanical properties of LiPF/poly(propylene glycol) acrylate electrolyte at a graphitic carbon interface: A reactive molecular dynamics study
Verners O, Lyulin AV and Simone A
This reactive molecular dynamics study explores the salt concentration dependence of the viscoelastic and mechanical failure properties of a poly(propylene glycol)/LiPF-based solid polymer electrolyte (SPE) at a graphitic carbon electrode interface. To account for the finite-size effect of interface-confined SPE films, the properties of two distinct film thicknesses are compared with the respective bulk properties. Additionally, the effect of uniaxial compression in the interface-normal direction on free energy profiles of Li-ion SPE-desolvation is studied. © 2018 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 718-730.
Comparing the Mechanical Response of Di-, Tri-, and Tetra-functional Resin Epoxies with Reactive Molecular Dynamics
Radue MS, Jensen BD, Gowtham S, Klimek-McDonald DR, King JA and Odegard GM
The influence of monomer functionality on the mechanical properties of epoxies is studied using Molecular Dynamics (MD) with the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli. Therefore, ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies.
Charge transport and structure in semimetallic polymers
Rudd S, Franco-Gonzalez JF, Kumar Singh S, Ullah Khan Z, Crispin X, Andreasen JW, Zozoulenko I and Evans D
Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobility > 3 cm/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. © 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 97-104.
Ferroelectric switching and electrochemistry of pyrrole substituted trialkylbenzene-1,3,5-tricarboxamides
Meng X, Gorbunov AV, Christian Roelofs WS, Meskers SC, Janssen RA, Kemerink M and Sijbesma RP
We explore a new approach to organic ferroelectric diodes using a benzene-tricarboxamide (BTA) core connected with C10 alkyl chains to pyrrole groups, which can be polymerized to provide a semiconducting ferroelectric material. The compound possesses a columnar hexagonal liquid crystalline (LC) phase and exhibits ferroelectric switching. At low switching frequencies, an additional process occurs, which leads to a high hysteretic charge density of up to ∼1000 mC/m. Based on its slow rate, the formation of gas bubbles, and the emergence of characteristic polypyrrole absorption bands in the UV-Vis-NIR, the additional process is identified as the oxidative polymerization of pyrrole groups, enabled by the presence of amide groups. Polymerization of the pyrrole groups, which is essential to obtain semiconductivity, is limited to thin layers at the electrodes, amounting to ∼17 nm after cycling for 21 h. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 673-683.
Spectroscopic properties of poly(9,9-dioctylfluorene) thin films possessing varied fractions of β-phase chain segments: enhanced photoluminescence efficiency via conformation structuring
Perevedentsev A, Chander N, Kim JS and Bradley DD
Poly(9,9-dioctylfluorene) (PFO) is a widely studied blue-emitting conjugated polymer, the optoelectronic properties of which are strongly affected by the presence of a well-defined chain-extended "β-phase" conformational isomer. In this study, optical and Raman spectroscopy are used to systematically investigate the properties of PFO thin films featuring a varied fraction of β-phase chain segments. Results show that the photoluminescence quantum efficiency (PLQE) of PFO films is highly sensitive to both the β-phase fraction and the method by which it was induced. Notably, a PLQE of ∼69% is measured for PFO films possessing a ∼6% β-phase fraction induced by immersion in solvent/nonsolvent mixtures; this value is substantially higher than the average PLQE of ∼55% recorded for other β-phase films. Furthermore, a linear relationship is observed between the intensity ratios of selected Raman peaks and the β-phase fraction determined by commonly used absorption calibrations, suggesting that Raman spectroscopy can be used as an alternative means to quantify the β-phase fraction. As a specific example, spatial Raman mapping is used to image a mm-scale β-phase stripe patterned in a glassy PFO film, with the extracted β-phase fraction showing excellent agreement with the results of optical spectroscopy. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 1995-2006.
Small-angle X-ray scattering as a useful supplementary technique to determine molecular masses of polyelectrolytes in solution
Plazzotta B, Diget JS, Zhu K, Nyström B and Pedersen JS
Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number-average molecular masses is represented by small-angle X-ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge-repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field-flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 1913-1917.
Phase Behavior of Poly(3-hexylthiophene-2,5-diyl)
Snyder CR and Gomez ED
The phase behavior of many conjugated polymers is rich with both crystalline and liquid crystalline phases. Recent computational efforts have identified the isotropic-to-nematic transition temperature for polymers such as poly(3-hexylthiophene-2,5-diyl) (P3HT). Herein, model predictions are combined with experimentally determined values of the equilibrium melting temperature as a function of chain length to provide the complete phase behavior for P3HT. Additionally, because a full description of the phase behavior requires proper accounting for the regioregularity of the chain, a thermodynamic relationship is derived to predict this behavior as a function of both chain length and regioregularity and the impact of regioregularity on the expected phase diagram is discussed.
Modular Polymer Biosensors by Solvent Immersion Imprint Lithography
Moore JS, Xantheas SS, Grate JW, Wietsma TW, Gratton E and Vasdekis AE
We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O sensing as probed by way of example here, as well as any polymer permeable reactant.
Dependence on material choice of degradation of organic solar cells following exposure to humid air
Glen TS, Scarratt NW, Yi H, Iraqi A, Wang T, Kingsley J, Buckley AR, Lidzey DG and Donald AM
Electron microscopy has been used to study the degradation of organic solar cells when exposed to humid air. Devices with various different combinations of commonly used organic solar cell hole transport layers and cathode materials have been investigated. In this way the ingress of water and the effect it has on devices could be studied. It was found that calcium and aluminum in the cathode both react with water, causing voids and delamination within the device. The use of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was found to increase the degradation by easing water ingress into the device. Replacing these materials removed these degradation features. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 216-224.
Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-dioctylfluorene)
Perevedentsev A, Stavrinou PN, Bradley DD and Smith P
Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest. Crystals form following adoption of the planar-zigzag β-phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature-composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 1481-1491.
Solution-crystallization and related phenomena in 9,9-dialkyl-fluorene polymers. II. Influence of side-chain structure
Perevedentsev A, Stavrinou PN, Smith P and Bradley DD
Solution-crystallization is studied for two polyfluorene polymers possessing different side-chain structures. Thermal analysis and temperature-dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X-ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar-zigzag chain conformation termed the β-phase, which is observed for certain linear-side-chain polyfluorenes, is necessary for the formation of so-called polymer-solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side-chains prevents formation of the β-phase conformation and results in non-solvated, i.e. melt-crystallization-type, polymer crystals. Unlike non-solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β-phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter-chain interactions. The presented results clarify the fundamental differences between the β-phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 1492-1506.
Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: A SANS and Rheology Study
Lopez CG, Rogers SE, Colby RH, Graham P and Cabral JT
We report a small angle neutron scattering (SANS) and rheology study of cellulose derivative polyelectrolyte sodium carboxymethyl cellulose with a degree of substitution of 1.2. Using SANS, we establish that this polymer is molecularly dissolved in water with a locally stiff conformation with a stretching parameter[Formula: see text]. We determine the cross sectional radius of the chain ([Formula: see text] 3.4 Å) and the scaling of the correlation length with concentration ( = 296 Å for in g/L) is found to remain unchanged from the semidilute to concentrated crossover as identified by rheology. Viscosity measurements are found to be in qualitative agreement with scaling theory predictions for flexible polyelectrolytes exhibiting semidilute unentangled and entangled regimes, followed by what appears to be a crossover to neutral polymer concentration dependence of viscosity at high concentrations. Yet those higher concentrations, in the concentrated regime defined by rheology, still exhibit a peak in the scattering function that indicates a correlation length that continues to scale as[Formula: see text]. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 492-501.
Extraordinarily large swelling energy of iodine-treated poly(vinyl alcohol) demonstrated by jump of a film
Takamura T, Nozawa K, Sugimoto Y and Shioya M
Organic material characteristics of volume change and stress generation have attracted the attention of many researchers aiming to develop chemomechanical systems such as artificial muscles and polymer engines having the advantages of high energy density and silent operation. Although polymer gels offer a relatively large actuator stroke, their mechanical properties are relatively poor and the working temperature is relatively low, often limited by the evaporation of liquid if contained. We have developed an iodine-treated poly(vinyl alcohol) having extraordinarily large vapor-induced deswelling stress reaching 59 MPa, which is one to two orders of magnitude greater than those of ordinary polymer gels. Furthermore, this material has extremely large volumetric and gravimetric energy densities reaching 1.3 × 10 J m and 9.6 × 10 J kg, respectively, and an elastic modulus of a few GPa and is heat-resistant to at least 200 °C. The high performance of this material can be demonstrated by a jump of a film. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. , , 1357-1365.
Interactions of Cartilage Extracellular Matrix Macromolecules
Horkay F
Articular cartilage is a low-friction, load-bearing tissue located at joint surfaces. The extracellular matrix (ECM) of cartilage consists of a fibrous collagen network, which is pre-stressed by the osmotic swelling pressure exerted by negatively charged proteoglycan aggregates embedded in the collagen network. The major proteoglycan is the bottlebrush shaped aggrecan, which forms complexes with linear hyaluronic acid chains. We quantify microscopic and macroscopic changes resulting from self-assembly between aggrecan and hyaluronic acid using a complementary set of physical measurements to determine structure and interactions by combining scattering techniques, including small-angle X-ray scattering, small-angle neutron scattering, and dynamic light scattering with macroscopic osmotic pressure measurements. It is demonstrated that the osmotic pressure that defines the load bearing ability of cartilage is primarily governed by the main macromolecular components (aggrecan and collagen) of the ECM. Knowledge of the interactions between the macromolecular components of cartilage ECM is essential to understand biological function and to develop successful tissue engineering strategies for cartilage repair.
High Mechanophore Content Polyester-Acrylate ABA Block Copolymers: Synthesis and Sonochemical Activation
Kean ZS, Black Ramirez AL and Craig SL
Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams
Singhal P, Rodriguez JN, Small W, Eagleston S, Van de Water J, Maitland DJ and Wilson TS
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45-70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97-98% shape recovery over repeated cycles, a glassy storage modulus of 200-300 kPa and recovery stresses of 5-15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications.
Biomedical Applications of Biodegradable Polymers
Ulery BD, Nair LS and Laurencin CT
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Direct Effects of Ionizing Radiation on Macromolecules
Kempner ES
In the dry or frozen states, macromolecules are damaged directly by interactions with ionizing radiation. Since γ-rays and high-energy electrons randomly ionize orbital electrons in their path, larger molecules are more likely to suffer an interaction with these radiations. In each interaction, energy is transferred to the struck molecule, resulting in irreversibly broken covalent bonds. There is an extensive literature describing these radiation modifications in both synthetic and biopolymers. Although many different properties are measured, there emerges a similar picture of the nature of radiation damage that is common to all macromolecules. The techniques used in study of one species may be used to resolve questions raised in the other class of macromolecules.
Effect of Adjacent Hydrophilic Polymer Thin Films on Physical Aging and Residual Stress in Thin Films of Poly(butylnorbornene-hydroxyhexafluoroisopropyl norbornene)
Lewis EA, Stafford CM and Vogt BD
The properties of thin supported polymer films can be dramatically impacted by the substrate upon which it resides. A simple way to alter the properties of the substrate (chemistry, rigidity, dynamics) is by coating it with an immiscible polymer. Here we describe how ultrathin (ca. 2 nm) hydrophilic polymer layers of poly(acrylic acid), PAA, and poly(styrenesulfonate), PSS, impact the aging behavior and the residual stress in thin films of poly(butylnorbornene--hydroxyhexafluoroisopropyl norbornene), BuNB--HFANB. The aging rate decreases as the film thickness () is decreased, but the extent of this change depends on the adjacent layer. Even for the thickest films (>500 nm), there is a decrease in the aging rate at 100 °C when BuNB-r-HFANB is in contact with PSS. In an effort to understand the origins of these differences in the aging behavior, the elastic modulus and residual stress (σ) in the films were determined by wrinkling as a function of aging time. The change in the elastic modulus during aging does not appear to be directly correlated with the densification or expansion of the films, but the aging rates appear to roughly scale as σ . These results illustrate that the physical aging of thin polymer films can be altered by adjacent polymers.
Estimating the Segregation Strength of Microphase-Separated Diblock Copolymers from the Interfacial Width
Burns AB, Christie D, Mulhearn WD and Register RA
The ever-growing catalog of monomers being incorporated into block polymers affords exceptional control over phase behavior and nanoscale structure. The segregation strength, , is the fundamental link between the molecular-level detail and the thermodynamics. However, predicting phase behavior mandates at least one experimental measurement of for each pair of blocks. This typically requires access to the disordered state. We describe a method for estimating from small-angle X-ray scattering measurements of the interfacial width between lamellar microdomains, , in the microphase-separated melt. The segregation strength is determined by comparing to self-consistent field theory calculations of the intrinsic interfacial width, , as a function of the mean-field . The method is validated using a series of independent experimental measurements of and , measured via the order-disorder transition temperature, . The average absolute relative difference between calculated from and the value calculated from is a modest 11%. Corrections for nonplanarity of the interfaces are investigated but do not improve the agreement between the experiments and theory. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.