EXPERT SYSTEMS

COVID-19 detection based on pre-trained deep networks and LSTM model using X-ray images enhanced contrast with artificial bee colony algorithm
Er MB
Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.
Federated learning based Covid-19 detection
Chowdhury D, Banerjee S, Sannigrahi M, Chakraborty A, Das A, Dey A and Dwivedi AD
The world is affected by COVID-19, an infectious disease caused by the SARS-CoV-2 virus. Tests are necessary for everyone as the number of COVID-19 affected individual's increases. So, the authors developed a basic sequential CNN model based on deep and federated learning that focuses on user data security while simultaneously enhancing test accuracy. The proposed model helps users detect COVID-19 in a few seconds by uploading a single chest X-ray image. A deep learning-aided architecture that can handle client and server sides efficiently has been proposed in this work. The front-end part has been developed using StreamLit, and the back-end uses a Flower framework. The proposed model has achieved a global accuracy of 99.59% after being trained for three federated communication rounds. The detailed analysis of this paper provides the robustness of this work. In addition, the Internet of Medical Things (IoMT) will improve the ease of access to the aforementioned health services. IoMT tools and services are rapidly changing healthcare operations for the better. Hopefully, it will continue to do so in this difficult time of the COVID-19 pandemic and will help to push the envelope of this work to a different extent.
Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods
Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M and Yarman BSB
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine-Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach.
Artificial neural networks for prediction of COVID-19 in India by using backpropagation
Manohar B and Das R
The COVID-19 pandemic has affected thousands of people around the world. In this study, we used artificial neural network (ANN) models to forecast the COVID-19 outbreak for policymakers based on 1st January to 31st October 2021 of positive cases in India. In the confirmed cases of COVID-19 in India, it's critical to use an estimating model with a high degree of accuracy to get a clear understanding of the situation. Two explicit mathematical prediction models were used in this work to anticipate the COVID-19 epidemic in India. A Boltzmann Function-based model and Beesham's prediction model are among these methods and also estimated using the advanced ANN-BP models. The COVID-19 information was partitioned into two sections: training and testing. The former was utilized for training the ANN-BP models, and the latter was used to test them. The information examination uncovers critical day-by-day affirmed case changes, yet additionally unmistakable scopes of absolute affirmed cases revealed across the time span considered. The ANN-BP model that takes into consideration the preceding 14-days outperforms the others based on the archived results. In forecasting the COVID-19 pandemic, this comparison provides the maximum incubation period, in India. Mean square error, and mean absolute percent error have been treated as the forecast model performs more accurately and gets good results. In view of the findings, the ANN-BP model that considers the past 14-days for the forecast is proposed to predict everyday affirmed cases, especially in India that have encountered the main pinnacle of the COVID-19 outbreak. This work has not just demonstrated the relevance of the ANN-BP techniques for the expectation of the COVID-19 outbreak yet additionally showed that considering the incubation time of COVID-19 in forecast models might produce more accurate assessments.
Detection of COVID-19 from chest X-ray images: Boosting the performance with convolutional neural network and transfer learning
Asif S, Wenhui Y, Amjad K, Jin H, Tao Y and Jinhai S
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of 1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.
The role of contemporary digital tools and technologies in COVID-19 crisis: An exploratory analysis
Subramanian M, Shanmuga Vadivel K, Hatamleh WA, Alnuaim AA, Abdelhady M and V E S
Following the COVID-19 pandemic, there has been an increase in interest in using digital resources to contain pandemics. To avoid, detect, monitor, regulate, track, and manage diseases, predict outbreaks and conduct data analysis and decision-making processes, a variety of digital technologies are used, ranging from artificial intelligence (AI)-powered machine learning (ML) or deep learning (DL) focused applications to blockchain technology and big data analytics enabled by cloud computing and the internet of things (IoT). In this paper, we look at how emerging technologies such as the IoT and sensors, AI, ML, DL, blockchain, augmented reality, virtual reality, cloud computing, big data, robots and drones, intelligent mobile apps, and 5G are advancing health care and paving the way to combat the COVID-19 pandemic. The aim of this research is to look at possible technologies, processes, and tools for addressing COVID-19 issues such as pre-screening, early detection, monitoring infected/quarantined individuals, forecasting future infection rates, and more. We also look at the research possibilities that have arisen as a result of the use of emerging technology to handle the COVID-19 crisis.
Covid-19 cases prediction using SARIMAX Model by tuning hyperparameter through grid search cross-validation approach
Sah S, Surendiran B, Dhanalakshmi R and Yamin M
SARS-Coronavirus was first detected in December 2019, later named COVID-19, and declared a pandemic by the World Health Organization (WHO). As prediction models assist policymakers in making decisions based on expected outcomes. Existing models were only used to anticipate a smaller range of data resulting in irrelevant predictions. Our research focuses on predicting COVID-19 confirmed, recovered, and deceased Indian cases for 20 days ahead. Tuning of hyperparameters is performed with a grid search cross-validation approach. The dataset is collected from the Kaggle. Our forecast indicates that the count of confirmed and deceased cases is higher whereas, recovered cases prediction shows a decreasing trend. The Score achieved is 0.5112 and root-mean-square error (RMSE) is 1251 using optimized SARIMAX. Finally, Monte Carlo simulation has also been performed to justify the prediction accuracy as compared to other models such as linear, polynomial, prophet, and SARIMAX without grid search cross validation.
Modelling uncertainties with TOPSIS and GRA based on q-rung orthopair m-polar fuzzy soft information in COVID-19
Riaz M, Garg H, Hamid MT and Afzal D
Fuzzy hybrid models are strong mathematical tools to address vague and uncertain information in real-life circumstances. The aim of this article is to introduce a new fuzzy hybrid model named as of q-rung orthopair m-polar fuzzy soft set (q-RO-m-PFSS) as a robust fusion of soft set (SS), m-polar fuzzy set (m-PFS) and q-rung orthopair fuzzy set (q-ROFS). A q-RO-m-PFSS is a new approach towards modelling uncertainties in the multi-criteria decision making (MCDM) problems. Some fundamental operations on q-RO-m-PFSSs, their key properties, and related significant results are introduced. Additionally, the complexity of logistics and supply chain management during COVID-19 is analysed using TOPSIS (technique for ordering preference through the ideal solution) and GRA (grey relational analysis) with the help of q-RO-m-PFS information. The linguistic terms are used to express q-RO-m-PFS information in terms of numeric values. The proposed approaches are worthy efficient in the selection of ventilator's manufacturers for the patients suffering from epidemic disease named as COVID-19. A practical application of proposed MCDM techniques is demonstrated by respective numerical examples. The comparison analysis of the final ranking computed by proposed techniques is also given to justify the feasibility, applicability and reliability of these techniques.
Effective hybrid deep learning model for COVID-19 patterns identification using CT images
Ibrahim DA, Zebari DA, Mohammed HJ and Mohammed MA
Coronavirus disease 2019 (COVID-19) has attracted significant attention of researchers from various disciplines since the end of 2019. Although the global epidemic situation is stabilizing due to vaccination, new COVID-19 cases are constantly being discovered around the world. As a result, lung computed tomography (CT) examination, an aggregated identification technique, has been used to ameliorate diagnosis. It helps reveal missed diagnoses due to the ambiguity of nucleic acid polymerase chain reaction. Therefore, this study investigated how quickly and accurately hybrid deep learning (DL) methods can identify infected individuals with COVID-19 on the basis of their lung CT images. In addition, this study proposed a developed system to create a reliable COVID-19 prediction network using various layers starting with the segmentation of the lung CT scan image and ending with disease prediction. The initial step of the system starts with a proposed technique for lung segmentation that relies on a no-threshold histogram-based image segmentation method. Afterward, the GrabCut method was used as a post-segmentation method to enhance segmentation outcomes and avoid over-and under-segmentation problems. Then, three pre-trained models of standard DL methods, including Visual Geometry Group Network, convolutional deep belief network, and high-resolution network, were utilized to extract the most affective features from the segmented images that can help to identify COVID-19. These three described pre-trained models were combined as a new mechanism to increase the system's overall prediction capabilities. A publicly available dataset, namely, COVID-19 CT, was used to test the performance of the proposed model, which obtained a 95% accuracy rate. On the basis of comparison, the proposed model outperformed several state-of-the-art studies. Because of its effectiveness in accurately screening COVID-19 CT images, the developed model will potentially be valuable as an additional diagnostic tool for leading clinical professionals.
Deming least square regressed feature selection and Gaussian neuro-fuzzy multi-layered data classifier for early COVID prediction
Mydukuri RV, Kallam S, Patan R, Al-Turjman F and Ramachandran M
Coronavirus disease (COVID-19) is a harmful disease caused by the new SARS-CoV-2 virus. COVID-19 disease comprises symptoms such as cold, cough, fever, and difficulty in breathing. COVID-19 has affected many countries and their spread in the world has put humanity at risk. Due to the increasing number of cases and their stress on administration as well as health professionals, different prediction techniques were introduced to predict the coronavirus disease existence in patients. However, the accuracy was not improved, and time consumption was not minimized during the disease prediction. To address these problems, least square regressive Gaussian neuro-fuzzy multi-layered data classification (LSRGNFM-LDC) technique is introduced in this article. LSRGNFM-LDC technique performs efficient COVID prediction with better accuracy and lesser time consumption through feature selection and classification. The preprocessing is used to eliminate the unwanted data in input features. Preprocessing is applied to reduce the time complexity. Next, Deming Least Square Regressive Feature Selection process is carried out for selecting the most relevant features through identifying the line of best fit. After the feature selection process, Gaussian neuro-fuzzy classifier in LSRGNFM-LDC technique performs the data classification process with help of fuzzy if-then rules for performing prediction process. Finally, the fuzzy if-then rule classifies the patient data as lower risk level, medium risk level and higher risk level with higher accuracy and lesser time consumption. Experimental evaluation is performed by Novel Corona Virus 2019 Dataset using different metrics like prediction accuracy, prediction time, and error rate. The result shows that LSRGNFM-LDC technique improves the accuracy and minimizes the time consumption as well as error rate than existing works during COVID prediction.
Models for MAGDM with dual hesitant -rung orthopair fuzzy 2-tuple linguistic MSM operators and their application to COVID-19 pandemic
Naz S, Akram M, Saeid AB and Saadat A
In this article, we introduce dual hesitant -rung orthopair fuzzy 2-tuple linguistic set (DH-ROFTLS), a new strategy for dealing with uncertainty that incorporates a 2-tuple linguistic term into dual hesitant -rung orthopair fuzzy set (DH-ROFS). DH-ROFTLS is a better way to deal with uncertain and imprecise information in the decision-making environment. We elaborate the operational rules, based on which, the DH-ROFTL weighted averaging (DH-ROFTLWA) operator and the DH-ROFTL weighted geometric (DH-ROFTLWG) operator are presented to fuse the DH-ROFTL numbers (DH-ROFTLNs). As Maclaurin symmetric mean (MSM) aggregation operator is a useful tool to model the interrelationship between multi-input arguments, we generalize the traditional MSM to aggregate DH-ROFTL information. Firstly, the DH-ROFTL Maclaurin symmetric mean (DH-ROFTLMSM) and the DH-ROFTL weighted Maclaurin symmetric mean (DH-ROFTLWMSM) operators are proposed along with some of their desirable properties and some special cases. Further, the DH-ROFTL dual Maclaurin symmetric mean (DH-ROFTLDMSM) and weighted dual Maclaurin symmetric mean (DH-ROFTLWDMSM) operators with some properties and cases are presented. Moreover, the assessment and prioritizing of the most important aspects in multiple attribute group decision-making (MAGDM) problems is analysed by an extended novel approach based on the proposed aggregation operators under DH-ROFTL framework. At long last, a numerical model is provided for the selection of adequate medication to control COVID-19 outbreaks to demonstrate the use of the generated technique and exhibit its adequacy. Finally, to analyse the advantages of the proposed method, a comparison analysis is conducted and the superiorities are illustrated.
Deep transfer learning for COVID-19 fake news detection in Persian
Ghayoomi M and Mousavian M
The spread of fake news on social media has increased dramatically in recent years. Hence, fake news detection systems have received researchers' attention globally. During the COVID-19 outbreak in 2019 and the worldwide epidemic, the importance of this issue becomes more apparent. Due to the importance of the issue, a large number of researchers have begun to collect English datasets and to study COVID-19 fake news detection. However, there are a large number of low-resource languages, including Persian, that cannot develop accurate tools for automatic COVID-19 fake news detection due to the lack of annotated data for the task. In this article, we aim to develop a corpus for Persian in the domain of COVID-19 where the fake news is annotated and to provide a model for detecting Persian COVID-19 fake news. With the impressive advancement of multilingual pre-trained language models, the idea of cross-lingual transfer learning can be proposed to improve the generalization of models trained with low-resource language datasets. Accordingly, we use the state-of-the-art deep cross-lingual contextualized language model, XLM-RoBERTa, and the parallel convolutional neural networks to detect Persian COVID-19 fake news. Moreover, we use the idea of knowledge transferring across-domains to improve the results by using both the English COVID-19 dataset and the general domain Persian fake news dataset. The combination of both cross-lingual and cross-domain transfer learning has outperformed the models and it has beaten the baseline by 2.39% significantly.
Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, Alomari OA, Abdulkareem KH, Adam A, Damasevicius R, Mohammed MA and Zitar RA
COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
COVID-19 diagnosis system by deep learning approaches
Bhuyan HK, Chakraborty C, Shelke Y and Pani SK
The novel coronavirus disease 2019 (COVID-19) has been a severe health issue affecting the respiratory system and spreads very fast from one human to other overall countries. For controlling such disease, limited diagnostics techniques are utilized to identify COVID-19 patients, which are not effective. The above complex circumstances need to detect suspected COVID-19 patients based on routine techniques like chest X-Rays or CT scan analysis immediately through computerized diagnosis systems such as mass detection, segmentation, and classification. In this paper, regional deep learning approaches are used to detect infected areas by the lungs' coronavirus. For mass segmentation of the infected region, a deep Convolutional Neural Network (CNN) is used to identify the specific infected area and classify it into COVID-19 or Non-COVID-19 patients with a full-resolution convolutional network (FrCN). The proposed model is experimented with based on detection, segmentation, and classification using a trained and tested COVID-19 patient dataset. The evaluation results are generated using a fourfold cross-validation test with several technical terms such as Sensitivity, Specificity, Jaccard (Jac.), Dice (F1-score), Matthews correlation coefficient (MCC), Overall accuracy, etc. The comparative performance of classification accuracy is evaluated on both with and without mass segmentation validated test dataset.
Blockchain technology: A DNN token-based approach in healthcare and COVID-19 to generate extracted data
Mallikarjuna B, Shrivastava G and Sharma M
The healthcare technologies in COVID-19 pandemic had grown immensely in various domains. Blockchain technology is one such turnkey technology, which is transforming the data securely; to store electronic health records (EHRs), develop deep learning algorithms, access the data, process the data between physicians and patients to access the EHRs in the form of distributed ledgers. Blockchain technology is also made to supply the data in the cloud and contact the huge amount of healthcare data, which is difficult and complex to process. As the complexity in the analysis of data is increasing day by day, it has become essential to minimize the risk of data complexity. This paper supports deep neural network (DNN) analysis in healthcare and COVID-19 pandemic and gives the smart contract procedure, to identify the feature extracted data (FED) from the existing data. At the same time, the innovation will be useful to analyse future diseases. The proposed method also analyze the existing diseases which had been reported and it is extremely useful to guide physicians in providing appropriate treatment and save lives. To achieve this, the massive data is integrated using Python scripting language under various libraries to perform a wide range of medical and healthcare functions to infer knowledge that assists in the diagnosis of major diseases such as heart disease, blood cancer, gastric and COVID-19.
A hybrid feature selection model based on butterfly optimization algorithm: COVID-19 as a case study
El-Hasnony IM, Elhoseny M and Tarek Z
The need to evolve a novel feature selection (FS) approach was motivated by the persistence necessary for a robust FS system, the time-consuming exhaustive search in traditional methods, and the favourable swarming manner in various optimization techniques. Most of the datasets have a high dimension in many issues since all features are not crucial to the problem, which reduces the algorithm's accuracy and efficiency. This article presents a hybrid feature selection approach to solve the low precision and tardy convergence of the butterfly optimization algorithm (BOA). The proposed method is dependent on combining the algorithm of BOA and the particle swarm optimization (PSO) as a search methodology using a wrapper framework. BOA is started with a one-dimensional cubic map in the proposed approach, and a non-linear parameter control technique is also implemented. To boost the basic BOA for global optimization, PSO algorithm is mixed with the butterfly optimization algorithm (BOAPSO). A 25 dataset evaluates the proposed BOAPSO to determine its efficiency with three metrics: classification precision, the selected features, and the computational time. A COVID-19 dataset has been used to evaluate the proposed approach. Compared to the previous approaches, the findings show the supremacy of BOAPSO for enhancing performance precision and minimizing the number of chosen features. Concerning the accuracy, the experimental outcomes demonstrate that the proposed model converges rapidly and performs better than with the PSO, BOA, and GWO with improvement percentages: 91.07%, 87.2%, 87.8%, 87.3%, respectively. Moreover, the proposed model's average selected features are 5.7 compared to the PSO, BOA, and GWO, with average features 22.5, 18.05, and 23.1, respectively.
Local binary pattern and deep learning feature extraction fusion for COVID-19 detection on computed tomography images
Mubarak AS, Serte S, Al-Turjman F, Ameen ZS and Ozsoz M
The deadly coronavirus virus (COVID-19) was confirmed as a pandemic by the World Health Organization (WHO) in December 2019. It is important to identify suspected patients as early as possible in order to control the spread of the virus, improve the efficacy of medical treatment, and, as a result, lower the mortality rate. The adopted method of detecting COVID-19 is the reverse-transcription polymerase chain reaction (RT-PCR), the process is affected by a scarcity of RT-PCR kits as well as its complexities. Medical imaging using machine learning and deep learning has proved to be one of the most efficient methods of detecting respiratory diseases, but to train machine learning features needs to be extracted manually, and in deep learning, efficiency is affected by deep learning architecture and low data. In this study, handcrafted local binary pattern (LBP) and automatic seven deep learning models extracted features were used to train support vector machines (SVM) and K-nearest neighbour (KNN) classifiers, to improve the performance of the classifier, a concatenated LBP and deep learning feature was proposed to train the KNN and SVM, based on the performance criteria, the models VGG-19 + LBP achieved the highest accuracy of 99.4%. The SVM and KNN classifiers trained on the hybrid feature outperform the state of the art model. This shows that the proposed feature can improve the performance of the classifiers in detecting COVID-19.
DC-GAN-based synthetic X-ray images augmentation for increasing the performance of EfficientNet for COVID-19 detection
Shah PM, Ullah H, Ullah R, Shah D, Wang Y, Islam SU, Gani A and Rodrigues JJPC
Currently, many deep learning models are being used to classify COVID-19 and normal cases from chest X-rays. However, the available data (X-rays) for COVID-19 is limited to train a robust deep-learning model. Researchers have used data augmentation techniques to tackle this issue by increasing the numbers of samples through flipping, translation, and rotation. However, by adopting this strategy, the model compromises for the learning of high-dimensional features for a given problem. Hence, there are high chances of overfitting. In this paper, we used deep-convolutional generative adversarial networks algorithm to address this issue, which generates synthetic images for all the classes (Normal, Pneumonia, and COVID-19). To validate whether the generated images are accurate, we used the k-mean clustering technique with three clusters (Normal, Pneumonia, and COVID-19). We only selected the X-ray images classified in the correct clusters for training. In this way, we formed a synthetic dataset with three classes. The generated dataset was then fed to The EfficientNetB4 for training. The experiments achieved promising results of 95% in terms of area under the curve (AUC). To validate that our network has learned discriminated features associated with lung in the X-rays, we used the Grad-CAM technique to visualize the underlying pattern, which leads the network to its final decision.
COVID-19 special issue: Intelligent solutions for computer communication-assisted infectious disease diagnosis
Al-Turjman F
Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem
Gül S
The multiple attribute decision-making models are empowered with the support of fuzzy sets such as intuitionistic, q-rung orthopair, Pythagorean, and picture fuzzy sets, and also neutrosophic sets, etc. These concepts generate varying representation opportunities for the decision-maker's preferences and expertise. Pythagorean and Fermatean fuzzy sets are special cases of q-rung orthopair fuzzy set when  = 2 and  = 3, respectively. From a geometric perspective, the latter provides a broader representation domain than the former does. In this study, the emerging concept of Fermatean fuzzy set is studied in detail and three well-known multi-attribute evaluation methods, namely SAW, ARAS, and VIKOR are extended under Fermatean fuzzy environment. In this manner, the decision-makers will have more freedom in specifying their preferences, thoughts, and expertise, and the abovementioned decision approaches will be able to handle this new type of data. The applicability of the propositions is shown in determining the best Covid-19 testing laboratory which is an important topic of the ongoing global health crisis. To validate the proposed methods, a benchmark analysis covering the results of the existing Fermatean fuzzy set-based decision methods, namely TOPSIS, WPM, and Yager aggregation operators is presented.
COVID-19 patient diagnosis and treatment data mining algorithm based on association rules
Shan Z and Miao W
Association rules are used in different data mining applications, including Web mining, intrusion detection, and bioinformatics. This study mainly discusses the COVID-19 patient diagnosis and treatment data mining algorithm based on association rules. General data The key time interval during the main diagnosis and treatment process (including onset to dyspnea, first diagnosis, admission, mechanical ventilation, death, and the time from first diagnosis to admission, etc.), the cause of death by laboratory examination, and so forth. The frequency of drug use was counted and association rule algorithm was used to analyse and study the effect of drug treatment. The results could provide reference for rational drug use in COVID-19 patients. In this study, in order to improve the efficiency of data mining in data processing, it is necessary to pre-process these data. Secondly, in the application of this data mining, the main objective is to extract association rules of COVID-19 complications. So its properties for mining should be various diseases. Therefore, it is necessary to classify individual disease types. During the construction of association rules database, the data in the data warehouse is analysed online and the association rules data mining is analysed. The results are stored in the knowledge base for decision support. For example, the prediction results of the decision tree can be displayed at this level. After the construction of the mining model, the display interface can be mined, and the decision-maker can input the corresponding attribute value and then predict it. 0.76% of people had both COVID-19, CHD and hypertension, while 46.5% of people with COVID-19 and CHD were likely to have hypertension. This study is helpful to analyse the imaging factors of COVID-19 disease.