Experimental study of centrifugal pumping of magnetorheological fluid
This paper studies the potential of using a centrifugal pump to handle magnetorheological fluid with the ultimate goal of integrating such a pump directly into a magnetorheological clutch to increase MR actuator life and stabilize performance over time. A centrifugal pump design is proposed, and two prototype sizes are constructed. Experimental characterization of the pumps prototypes reveals that, even with a magnetorheological fluid containing 40% V/V of ferromagnetic microparticles, the standard scaling laws for centrifugal pumps provide accurate predictions of performance with changes in rotation speed. However, the results showed that these laws do not fully account for geometric effects when scaling the pump size due to differences in impeller performance. The results also show that a centrifugal pump of 46 mm in diameter can effectively circulate magnetorheological fluid at a flow rate of 90 mL/min per shear interface in a commercial MR clutch.
Effects of low cycle fatigue and inelastic buckling on the superelasticity and energy dissipation capacity of NiTi SMA rebar
Superelastic NiTi Shape Memory Alloy (SMA) rebars have emerged as compelling materials for structural engineering applications in concrete bridge piers, owing to their superior superelastic and energy dissipation properties. Incorporating NiTi SMA rebars enhances structural resilience against seismic loads by enabling effective earthquake energy dissipation while minimizing structural damage. However, under tension-compression cyclic loads, NiTi SMA rebars are subjected to strain reversals, leading to buckling and potential low cycle fatigue (LCF) failure. This study investigates the LCF behavior of NiTi SMA rebars under tension-compression cyclic loading, considering various strengths, diameters, and slenderness ratios (/). The findings indicate that NiTi SMA rebars with higher slenderness ratios experience accelerated LCF failure due to buckling, leading to deteriorated mechanical properties after fewer cycles compared to rebars with lower slenderness ratios. Moreover, the study reveals that total energy dissipation and residual strain of NiTi SMA rebars are influenced by strain amplitudes and slenderness ratios. Specifically, increasing the slenderness ratio and strain amplitude results in decreased total energy dissipation and increased residual strain, underscoring the significant impact of inelastic buckling on the LCF behavior of NiTi SMA rebars. Finally, equations are presented for the prediction of energy dissipation and residual strain of NiTi SMA rebars with different slenderness ratios under tension compression cyclic loading with different strain amplitudes.
4D printed origami-inspired accordion, Kresling and Yoshimura tubes
Applying tessellated origami patterns to the design of mechanical materials can enhance properties such as strength-to-weight ratio and impact absorption ability. Another advantage is the predictability of the deformation mechanics since origami materials typically deform through the folding and unfolding of their creases. This work focuses on creating 4D printed flexible tubular origami based on three different origami patterns: the accordion, the Kresling and the Yoshimura origami patterns, fabricated with a flexible polylactic acid (PLA) filament with heat-activated shape memory effect. The shape memory characteristics of the self-unfolding structures were then harnessed at 60°C, 75°C and 90°C. Due to differences in the folding patterns of each origami design, significant differences in behaviour were observed during shape programming and actuation. Among the three patterns, the accordion proved to be the most effective for actuation as the overall structure can be compressed following the folding crease lines. In comparison, the Kresling pattern exhibited cracking at crease locations during deformation, while the Yoshimura pattern buckled and did not fold as expected at the crease lines. To demonstrate a potential application, an accordion-patterned origami 4D printed tube for use in hand rehabilitation devices was designed and tested as a proof-of-concept prototype incorporating self-unfolding origami.
Mechanical properties and constitutive models of shape memory alloy for structural engineering: A review
Shape Memory Alloys (SMAs) are an innovative material with the unique features of superelasticity and energy dissipation capabilities under extreme loads. Due to their unique features, they have a great potential to be employed in structural engineering applications under different conditions. However, in order to effectively use SMAs in civil engineering structures and model their behaviors accurately in Finite Element (FE) packages, it is crucial for structural engineers to comprehend the mechanical properties and cyclic behavior of different SMA compositions under varying loading conditions. While previous studies have focused mainly on the cyclic behavior of SMAs under tensile loading, it is important to evaluate their fatigue behavior under cyclic tension-compression loading for seismic applications. This literature review aims to discuss the current gaps in the existing literature on the behavior of SMA rebars under low-cycle fatigue (LCF). The review provides a comprehensive overview of the primary characteristics of SMAs, summarizes the mechanical properties of SMAs presented in the literature and the parameters that affect them, and critically evaluates the effects of cyclic loading and LCF on SMAs. The review also provides a summary of the different constitutive models of SMAs and compares their advantages and limitations, which helps structural engineers to employ an appropriate constitutive model for predicting the accurate behavior of SMAs in FE software.
Validation and optimization of two models for the magnetic restoring forces using a multi-stable piezoelectric energy harvester
This article presents a tunable multi-stable piezoelectric energy harvester. The apparatus consists of a stationary magnet and a cantilever beam whose free end is attached by an assembly of two cylindrical magnets that can be moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By varying two parameters, the system can assume three stability states: tri-stable, bi-stable, and mono-stable, respectively. The developed apparatus is used to validate two models for the magnetic restoring force: the equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole approach. The study focuses on comparing the accuracy of the two models for a wide range of the tuning parameters. The restoring forces of the apparatus are determined dynamically and compared with their analytical counterparts based on each of the models. To improve the model accuracy, a model optimization is carried out by using the multi-population genetic algorithm. With the optimum models, the parametric sensitivity of each of the models is investigated. The stability state region is generated by using the optimum second model.
Design optimization and experimental evaluation of a large capacity magnetorheological damper with annular and radial fluid gaps
This paper presents an optimal design of a large-capacity Magnetorheological (MR) damper suitable for off-road vehicle applications. The damper includes an MR fluid bypass valve with both annular and radial gaps to generate a large damping force and dynamic range. An analytical model of the proposed damper is formulated based on the Bingham plastic model of MR fluids. To establish a relationship between the applied current and magnetic flux density in the MR fluid active regions, an analytical magnetic circuit is formulated and further compared with a magnetic finite element model. The MR valve geometrical parameters are subsequently optimized to maximize the damper dynamic range under specific volume and magnetic field constraints. The optimized MR valve can theoretically generate off-state and on-state damping forces of 1.1 and 7.41 kN, respectively at 12.5 mm/s damper piston velocity. The proposed damper has been also designed to allow a large piston stroke of 180 mm. The proof-of-concept of the optimally designed MR damper was subsequently fabricated and experimentally characterized to investigate its performance and validate the models. The results show that the proposed MR damper is able to provide large damping forces with a high dynamic range under different excitation conditions.
Development of piezoresistive PDMS/MWCNT foam nanocomposite sensor with ultrahigh flexibility and compressibility
Polymer foam nanocomposites attract great interest in many wide ranges of biomedical and healthcare monitoring applications. In this study, we investigated the effect of porosity and multi-walled carbon nanotube (MWCNT) content on the piezoresistivity, sensitivity, and mechanical properties of Polydimethylsiloxane (PDMS)/MWCNT foam nanocomposite. The foam nanocomposites were fabricated by particulate leaching method and their electrical and mechanical characteristics were investigated using the different porosity levels (60% and 70%) and different conductive nanofiller contents (0.5 wt.% and 1 wt.%). The foam nanocomposites with 0.5 wt.% MWCNT content and 60% porosity possessed higher pressure sensitivity, higher gage factor, and lower electrical hysteresis along with higher mechanical properties. Moreover, fabricated PDMS/MWCNT foam nanocomposite demonstrated high flexibility, high compressibility, and high recoverability in addition to limited mechanical hysteresis (less than 3%) with a large dynamic sensing range. Contrary to the existing foam nanocomposite samples in the literature, PDMS/MWCNT foam nanocomposites withstood higher pressure ranges (3.5-5 MPa) at limited thickness (average 2.3 mm) without experiencing noticeable macroscopic damage.
High-performance magneto-rheological clutches for direct-drive actuation: Design and development
This paper presents an improved design, complete analysis, and prototype development of high torque-to-mass ratio Magneto-Rheological (MR) clutches. The proposed MR clutches are intended as the main actuation mechanism of a robotic manipulator with five degrees of freedom. Multiple steps to increase the toque-to-mass ratio of the clutch are evaluated and implemented in one design. First, we focus on the Hall sensors' configuration. Our proposed MR clutches feature embedded Hall sensors for the indirect torque measurement. A new arrangement of the sensors with no effect on the magnetic reluctance of the clutch is presented. Second, we improve the magnetization of the MR clutch. We utilize a new hybrid design that features a combination of an electromagnetic coil and a permanent magnet for improved torque-to-mass ratio. Third, the gap size reduction in the hybrid MR clutch is introduced and the effect of such reduction on maximum torque and the dynamic range of MR clutch is investigated. Finally, the design for a pair of MR clutches with a shared magnetic core for antagonistic actuation of the robot joint is presented and experimentally validated. The details of each approach are discussed and the results of the finite element analysis are used to highlight the required engineering steps and to demonstrate the improvements achieved. Using the proposed design, several prototypes of the MR clutch with various torque capacities ranging from 15 to 200 N·m are developed, assembled, and tested. The experimental results demonstrate the performance of the proposed design and validate the accuracy of the analysis used for the development.
Experimental assessment of a linear actuator driven by magnetorheological clutches for automotive active suspensions
The main functions of automotive suspensions are to improve passenger comfort as well as vehicle dynamic performance. Simultaneously satisfying these functions is not possible because they require opposing suspension adjustments. This fundamental design trade-off can be solved with an active suspension system providing real-time modifications of the suspension behavior and vehicle attitude corrections. However, current active suspension actuator technologies have yet to reach a wide-spread commercial adoption due to excessive costs and performance limitations. This paper presents a design study assessing the potential of magnetorheological clutch actuators for automotive active suspension applications. An experimentally validated dynamic model is used to derive meaningful design requirements. An actuator design is proposed and built using a motor to feed counter-rotating MR clutches to provide upward and downward forces. Experimental characterization shows that all intended design requirements are met, and that the actuator can output a peak force of ±5300 N, a peak linear speed of ±1.9 m/s and a blocked-output force bandwidth of 92 Hz. When compared to other relevant technologies, the MR approach simultaneously shows both better force density and speeds (bandwidth) while adding minimal costs and weight. Results from this experimental assessment suggest that MR slippage actuation is promising for automotive active suspensions.
Parametric Study of a Triboelectric Transducer in Total Knee Replacement Application
Triboelectric energy harvesting is a relatively new technology showing promise for biomedical applications. This study investigates a triboelectric energy transducer for potential applications in total knee replacement (TKR) both as an energy harvester and a sensor. The sensor can be used to monitor loads at the knee joint. The proposed transducer generates an electrical signal that is directly related to the periodic mechanical load from walking. The proportionality between the generated electrical signal and the load transferred to the knee enables triboelectric transducers to be used as self-powered active load sensors. We analyzed the performance of a triboelectric transducer when subjected to simulated gait loading on a joint motion simulator. Two different designs were evaluated, one made of Titanium on Aluminum, (Ti-PDMS-Al), and the other made of Titanium on Titanium, (Ti-PDMS-Ti). The Ti-PDMS-Ti design generates more power than Ti-PDMS-Al and was used to optimize the structural parameters. Our analysis found these optimal parameters for the Ti-PDMS-Ti design: external resistance of 304 Ω, a gap of 550 , and a thickness of the triboelectric layer of 50 . Those parameters were optimized by varying resistance, gap, and the thickness while measuring the power outputs. Using the optimized parameters, the transducer was tested under different axial loads to check the viability of the harvester to act as a self-powered load sensor to estimate the knee loads. The forces transmitted across the knee joint during activities of daily living can be directly measured and used for self-powering, which can lead to improving the total knee implant functions.
Design, Analysis, and Fabrication of a Piezoelectric Force Tray for Total Knee Replacements
Force plates have been widely adopted in biomechanical gait analysis to measure reaction forces and the center of pressure. In this work, the force plate concept is miniaturized and extended for use within the polyethylene bearing insert of a total knee replacement (TKR). A simplified rectangular-shaped force plate with multiple integrated piezoelectric sensors, including designs with six and eight transducers, is presented in this work. The performance of the sensory system is investigated through finite element analysis and experimental validation. Initially, the ability of the two designs in sensing compartmental forces and contact point locations on one side of the force plate is numerically investigated. Selected designs of the force plate are then fabricated and used to experimentally validate the performance of the system. The results show a maximum error of less than 6% and 4.5% in compartmental force amplitude sensing for the force plates with six and eight transducers, respectively. The force plates were able to detect the contact point location with maximum errors of less than 1 mm. The relatively small sensing error quantities show the potential of using a piezoelectric force plate sensor design in TKR as well as other force sensing applications.
Conjugate unscented transformation-based uncertainty analysis of energy harvesters
This article presents a probabilistic approach to investigate the effect of parametric uncertainties on the mean power, tip deflection, and tip velocity of linear and nonlinear energy harvesting systems. Recently developed conjugate unscented transformation algorithm is used to compute the statistical moments of the output variables with multidimensional Gaussian uncertainty in parameters. The principle of maximum entropy is used to construct the probability density function of output variables from the knowledge of obtained statistical moments. The probability density functions for mean power were significantly complicated in shape with two and three distinct peaks for the nonlinear monostable and nonlinear bistable harvesters, respectively. Monte-Carlo simulations with = 8 × 10 samples for monostable harvester and = 6.5 × 10 samples for bistable harvester were used for validating the probability density functions. It is concluded that conjugate unscented transformation methodology affords a significant computational advantage without compromising accuracy. In addition, using conjugate unscented transformation method, we show that the dependence of mean power on parameters (excitation frequency, excitation amplitude, etc.), when multidimensional uncertainties are present, is decidedly different relative to a purely deterministic trend. The discrepancy in predicted power between the deterministic and uncertain trends for the monostable harvester, for instance, reach a maximum of 100%, 234%, and 110% for base frequency, base acceleration, and magnet gap, respectively. The deterministic trend consistently overestimates the harvested power relative to the uncertain trends. This work, therefore, may have applications in evaluating "worst case scenario" for harvested power. The major advantage of the presented methodology relative to extant techniques in energy harvesting literature is the accurate and computationally effective applicability to multidimensional uncertainty in parameters.
A sub-cc nonlinear piezoelectric energy harvester for powering leadless pacemakers
A miniature nonlinear piezoelectric energy harvester is developed to power state of the art leadless cardiac pacemakers from cardiac motions. The energy harvester is integrated in the leadless pacemaker and is connected to the myocardium. The energy harvester converts myocardial motions to electricity to power leadless pacemakers. The energy is stored in a battery or supercapacitor and is used for pacing. The device is composed of a bimorph piezoelectric beam confined in a gray iron frame. The system is assembled at high temperature and operated at the body temperature. The mismatch in the coefficients of thermal expansion of the beam and the frame causes the beam to buckle in body temperature. This intentional buckling makes the beam unstable and improves the power production and robustness of the device. Having high natural frequency is a major problem in microelectromechanical systems energy harvesters. Considering the small size of the energy harvester, 0.5 cm, the natural frequency is expected to be high. In our design, the natural frequency is lowered significantly using a buckled beam and a proof mass. Since the beam is buckled, the design is bistable and nonlinear, which could increase the output power. In this article, the device is analytically modeled, and the natural frequencies and mode shapes of the energy harvester are analytically derived. The terms corresponding to geometric nonlinearities are included in the electromechanical coupled governing equations. The simulations show that the device generates sufficient electricity to power leadless pacemakers.
In-situ poling and structurization of piezoelectric particulate composites
Composites of lead zirconate titanate particles in an epoxy matrix are prepared in the form of 0-3 and quasi 1-3 with different ceramic volume contents from 10% to 50%. Two different processing routes are tested. Firstly a conventional dielectrophoretic structuring is used to induce a chain-like particle configuration, followed by curing the matrix and poling at a high temperature and under a high voltage. Secondly a simultaneous combination of dielectrophoresis and poling is applied at room temperature while the polymer is in the liquid state followed by subsequent curing. This new processing route is practiced in an uncured thermoset system while the polymer matrix still possess a relatively high electrical conductivity. Composites with different degrees of alignment are produced by altering the magnitude of the applied electric field. A significant improvement in piezoelectric properties of quasi 1-3 composites can be achieved by a combination of dielectrophoretic alignment of the ceramic particles and poling process. It has been observed that the degree of structuring as well as the functional properties of the in-situ structured and poled composites enhance significantly compared to those of the conventionally manufactured structured composites. Improving the alignment quality enhances the piezoelectric properties of the particulate composites.
Modeling and characterization of shape memory alloy springs with water cooling strategy in a neurosurgical robot
Since shape memory alloy (SMA) has high power density and is magnetic resonance imaging (MRI) compatible, it has been chosen as the actuator for the meso-scale minimally invasive neurosurgical intracranial robot (MINIR-II) that is envisioned to be operated under continuous MRI guidance. We have devised a water cooling strategy to improve its actuation frequency by threading a silicone tube through the spring coils to form a compact cooling module-integrated actuator. To create active bi-directional motion in each robot joint, we configured the SMA springs in an antagonistic way. We modeled the antagonistic SMA spring behavior and provided the detailed steps to simulate its motion for a complete cycle. We investigated heat transfer during the resistive heating and water cooling processes. Characterization experiments were performed to determine the parameters used in both models, which were then verified by comparing the experimental and simulated data. The actuation frequency of the antagonistic SMAs was evaluated for several motion amplitudes and we could achieve a maximum actuation frequency of 0.143 Hz for a sinusoidal trajectory with 2 mm amplitude. Lastly, we developed a robotic system to implement the actuators on the MINIR-II to move its end segment back and forth for approximately ±25°.
Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator
This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.
Development of 2D Microdisplay Using an Integrated Microresonating Waveguide Scanning System
Our research team has developed a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high-image resolution and field of view obtained by mirror-based display systems. The basic design of the optical scanner includes a microfabricated SU-8 cantilever waveguide that is electromechanically deflected by a piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the actuator and the LED light modulation are generated and controlled using a field programmable gate array. Our recent study is an update to the previously-reported mechanical scanner, replacing the hand-built PZT scanner and fiber waveguide with a microfabricated system incorporating aerosol-deposited PZT thin film and a polymeric SU-8 wave guide. In this article, we report on the design and fabrication of a prototype miniaturized 2D scanner, discuss optical and mechanical the modeling of the system's properties and present the experimental results.
Smart Rehabilitation Devices: Part I - Force Tracking Control
Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle.
Smart Rehabilitation Devices: Part II - Adaptive Motion Control
This article presents a study of adaptive motion control of smart versatile rehabilitation devices using MR fluids. The device provides both isometric and isokinetic strength training and is reconfigurable for several human joints. Adaptive controls are developed to regulate resistance force based on the prescription of the therapist. Special consideration has been given to the human-machine interaction in the adaptive control that can modify the behavior of the device to account for strength gains or muscle fatigue of the human subject.
