Safflor Yellow A Protects Beas-2B Cells Against LPS-Induced Injury via Activating Nrf2
Acute lung injury and its severe form acute respiratory distress syndrome are lethal lung diseases. So far, effective therapy for the diseases is deficient and the prognosis is poor. Recently, it was found activating nuclear factor erythroid 2-related factor 2 could attenuate the injury including inflammation, oxidative stress, and apoptosis in those diseases. To discover novel therapy, we have evaluated safflor yellow A and explored the underlying mechanisms using Beas-2B cells injured by lipopolysaccharide. As a result, safflor yellow A could improve the viability of Beas-2B cells treated with lipopolysaccharide. Further investigations have revealed safflor yellow A suppressed oxidative stress induced by lipopolysaccharide via reducing reactive oxygen species and malondialdehyde, and elevating superoxide dismutase, catalase, and glutathione peroxidase. Meanwhile, the inflammation resulting from lipopolysaccharide was ameliorated through decreasing the pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. It was also found nuclear factor κB was inactivated by safflor yellow A. In addition, safflor yellow A downregulated cysteinyl aspartate specific proteinase-3 and Bcl-2-associated X protein and upregulated B-cell lymphoma-2 to inhibited apoptosis of Beas-2B cells induced by lipopolysaccharide. The activation of nuclear factor erythroid 2-related factor 2 was observed in Beas-2B cells, which was associated with the protective effects of safflor yellow A. And molecular docking elucidated safflor yellow A interacted with Kelch-like ECH-associated protein 1 to activate nuclear factor erythroid 2-related factor 2. These results can provide evidences for the discovery of novel therapy for further evaluation of safflor yellow A in the treatment of acute lung injury and acute respiratory distress syndrome.
and Streptozotocin-Induced Diabetes Mellitus
Diabetes mellitus is defined as prolonged hyperglycemia, which can harm the eyes, kidneys, and cardiovascular and neurological systems. Herbal agents and their derived supplements have been used for treatment of diabetes mellitus as a part of integrated complementary medicine for centuries. Numerous studies have considered (L.) Burm.f, Xanthorrhoeaceae, as an alternative medicine due to its abundant bioactive chemicals, such as alkaloids, anthraquinones, and enthrones, with therapeutical properties including antioxidant, anti-inflammatory, neuro-protective, and anti-diabetic effects. has received considerable attention in traditional medicine for the treatment of several diseases including diabetes mellitus. Numerous studies have investigated the effects of herbal agents on diabetes mellitus using a streptozotocin-induced diabetic model. Thereby, this article reviews the effects of prescription on streptozotocin-induced diabetes mellitus to provide a clear insight into the role of this medicinal plant in several biological functions, such as antioxidant, wound healing, anti-inflammatory, anti-hyperglycemic, and anti-hyperlipidemic in diabetic models. Graphical abstract.
Potential Benefits of Nutraceuticals for Oxidative Stress Management
Oxidative stress is an unbalanced redox state caused due to high concentration of reactive species and comparatively a very lower concentration of endogenous antioxidants in the body. When established, oxidative stress can disrupt cell structure and protein conformation and even damage genetic materials. Considering the degree of damage that oxidative stress can cause and the lack of promising treatment, preventing its onset is the best possible solution. Nutraceuticals, food or their extract that provides an added health benefit along with nutrition, can be used to prevent oxidative stress. An entire class of nutraceuticals are known for their inherent antioxidant properties, which can be included in our daily diet to prevent the occurrence of oxidative stress. Regulatory consumption of nutraceuticals can maintain a stable redox state, and thus prevents oxidative stress. In addition to managing oxidative stress, nutraceuticals can also help to control conditions like diabetes, neurodegeneration, cancer, organ inflammation, cardiovascular diseases, and other such conditions which are caused due to cellular oxidation. This review highlights the potential nutraceutical effect of several food and supplements which with further research along with genetic analysis can pave the road for nutrigenomics.
Russelioside B: a Pregnane Glycoside with Pharmacological Potential
Pregnanes and pregnane glycosides or their esters are well-studied secondary metabolites, many of them exhibit immunomodulator, anticancer, antidiabetic, antarthritic, antiulcer, anti-nociceptive, hypolipidemic, anti-inflammatory, and antibacterial properties. Pregnane glycosides are widely distributed in the families Apocyanaceae and Asclepiadaceae. Plant members of the genus R.Br., Apocynaceae, are among the most studied species because of uses in traditional medicine or as food. They are a rich source of pregnane glycosides, as russelioside B. However, the bioactivity profile of this pregnane glycoside has not been reviewed until now. The present review aims to summarize the most important pharmacological and therapeutic applications of russelioside B with specific emphasis on the mechanism of actions associated with its administration in preclinical models. Russelioside B has many pharmacological effects including antidiabetic, anti-obesity, anti-nociceptive, antiulcer, anti-inflammatory, anti-arthritis effects, and antibiofilm, and wound healing activities. Despite its outstanding pharmacotherapeutic potential, russelioside B has never been tested in clinical trials. This review indicates that russelioside B is a potentially promising bioactive candidate, but further deeper mechanistic studies and clinical trials are needed in the future to elucidate its interaction with receptors of specific genes.
Anti-dengue Potential of Mangiferin: Intricate Network of Dengue to Human Genes
Dengue fever has become one of the deadliest infectious diseases and requires the development of effective antiviral therapies. It is caused by members of the Flaviviridae family, which also cause various infections in humans, including dengue fever, tick-borne encephalitis, West Nile fever, and yellow fever. In addition, since 2019, dengue-endemic regions have been grappling with the public health and socio-economic impact of the ongoing coronavirus disease 19. Co-infections of coronavirus and dengue fever cause serious health complications for people who also have difficulty managing them. To identify the potentials of mangiferin, a molecular docking with various dengue virus proteins was performed. In addition, to understand the gene interactions between human and dengue genes, Cytoscape was used in this research. The Kyoto Encyclopedia of Genes and Genomes software was used to find the paths of Flaviviridae. The Kyoto Encyclopedia of Genes and Genomes and the Reactome Pathway Library were used to understand the biochemical processes involved. The present results show that mangiferin shows efficient docking scores and that it has good binding affinities with all docked proteins. The exact biological functions of type I interferon, such as interferon-α and interferon-β, were also shown in detail through the enrichment analysis of the signaling pathway. According to the docking results, it was concluded that mangiferin could be an effective drug against the complications of dengue virus 1, dengue virus 3, and non-structural protein 5. In addition, computational biological studies lead to the discovery of a new antiviral bioactive molecule and also to a deeper understanding of viral replication in the human body. Ultimately, the current research will be an important resource for those looking to use mangiferin as an anti-dengue drug.
()-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: an Assessment
Since ancient times, viruses such as dengue, herpes, Ebola, AIDS, influenza, chicken meat, and SARS have been roaming around causing great health burdens. Currently, the prescribed antiviral drugs have not cured the complications caused by viruses, whereas viral replication was not controlled by them. The treatments suggested are not only ineffectual, but also sometimes inefficient against viruses at all stages of the viral cycle as well. To fight against these contagious viruses, people rely heavily on medicinal plants to enhance their innate and adaptive immune systems. In this research, the preparation of ligands and proteins was performed using the Maestro V.13.2 module tool. This software, consisting of LigPrep, Grid Generation, SiteMap, and Glide XP, has each contributed significantly to the preparation of ligands and proteins. Ultimately, the research found that ()-(+)-rosmarinic acid was found to have significant docking scores of - 10.847 for herpes virus, of - 10.033 for NS5, and - 7.259 for NS1. In addition, the Prediction of Activity Spectra for Substances (PASS) server indicates that rosmarinic acid possesses a diverse spectrum of enzymatic activities, as probability active (Pa) values start at > 0.751, whereas it has fewer adverse effects than the drugs prescribed for viruses. Accordingly, it was found the rate of acute toxicity values of ()-(+)-rosmarinic acid at doses LD log10 (mmol/g) and LD (mg/g) in different routes of administration, such as intraperitoneal, intravenous, oral, and subcutaneous. Ultimately, the present study concluded that ()-(+)-rosmarinic acid would expose significant antiviral effects in and experiments, and this research would be a valuable asset for the future, especially for those who wish to discover a drug molecule for a variety of viruses.
Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives
Although Brazil gathers two fundamental features to occupy a leading position on the development of biodiversity-based medicines, the largest flora on earth and a broad tradition on the use of medicinal plants, the number of products derived from the national genetic heritage is so far modest, either as single drugs or as herbal medicines. This article highlights some aspects that may have contributed to the low rates of success and proposes new insights for innovation. We initially approach the use of medicinal plants in Brazil, molded by its ethnic diversity, and the development of the local pharmaceutical industry. A discussion of some governmental initiatives to support plant-based drug development is then presented. Employing the economic concept of "middle-income trap," we further propose that Brazil is stuck in a "middle-level science trap," since the increase in the number of scientific publications that launched the country to an intermediate publishing position has not been translated into drug development. Two new approaches to escape from this trap are presented, which may result in innovative drug development. The first is based on the exploitation of the antifragility properties of herbal products aiming to investigate non-canonical pharmacodynamics mechanisms of action, aligned with the concepts of system biology. The second is the manufacture of herbal products based on the circular economy principles, including the use of byproducts for the development of new therapeutical agents. The adoption of these strategies may result in innovative phytomedicines, with global competitiveness.
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G, lipoxins A and B, and thromboxane A. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure.
Anti- Effects of Different Ecotypes of Traditionally Used for Malaria in Iran
L., Fabaceae, or licorice has shown potential therapeutic effects on fever, gastric ulcers, hepatic disorders, and malaria. This study aimed to assess the antimalarial activity of different fractions of root extract from twelve ecotypes from Iran. In this regard, mice were then randomly divided into 8 groups of 5 mice. Four hours after mice were infected by , they received methanolic plant extract by intraperitoneal injection. The treatment was continued for 4 consecutive days (every 24 h), then on the fifth and seventh days, blood samples were taken from the tails of the mice and the parasitic percentages were calculated by microscopy technique. In comparison to control, every analyzed ecotype has a remarkable parasite inhibitory effect, whereas the source of the root also has a drastic difference in its antimalarial effects. The highest percentage of inhibition on days 5 and 7 was subjected to the extract of Semirom ecotype with suppression of 86.37 and 83%, respectively. On the other hand, 13.21 and 9.19% parasite growth inhibition was shown in the extracts of Shahrbabak and Haji Abad, respectively. The significant difference between these 12 ecotypes was shown with Mann-Whitney pairwise comparison to variable parasitemia day 5 and parasitemia day 7 ( < 0.001).
Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
Alpha-lipoic acid is an organic, sulfate-based compound produced by plants, humans, and animals. As a potent antioxidant and a natural dithiol compound, it performs a crucial role in mitochondrial bioenergetic reactions. A healthy human body, on the other hand, can synthesize enough α-lipoic acid to scavenge reactive oxygen species and increase endogenous antioxidants; however, the amount of α-lipoic acid inside the body decreases significantly with age, resulting in endothelial dysfunction. Molecular orbital energy and spin density analysis indicate that the sulfhydryl (-SH) group of molecules has the greatest electron donating activity, which would be responsible for the antioxidant potential and free radical scavenging activity. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties. α-Lipoic acid has cytotoxic and antiproliferative effects on several cancers, including polycystic ovarian syndrome. It also has usefulness in the context of female and male infertility. Although α-lipoic acid has numerous clinical applications, the majority of them stem from its antioxidant properties; however, its bioavailability in its pure form is low (approximately 30%). However, nanoformulations have shown promise in this regard. The proton affinity and electron donating activity, as a redox-active agent, would be responsible for the antioxidant potential and free radical scavenging activity of the molecule. This review discusses the most recent clinical data on α-lipoic acid in the prevention, management, and treatment of a variety of diseases, including coronavirus disease 2019. Based on current evidence, the preclinical and clinical potential of this molecule is discussed.
Quercetin-3--rutinoside from Downregulates Adipogenesis and Lipid Accumulation and Improves Glucose Uptake by Activation of AMPK/Glut-4 in 3T3-L1 Cells
Natural product-based therapeutic alternatives have drawn immense interest to deal with growing incidence of metabolic disorders. Rutin (quercetin-3--rutinoside) is found in a variety of fruits, vegetables, and plant beverages. In the present study, rutin was isolated from Lam., leaves and its anti-lipidemic and anti-adipogenic activity was evaluated through inhibition of key digestive enzymes and cell culture experiments using 3T3-L1 adipocytes. Rutin treatment substantially reduced α-glucosidase and pancreatic lipase activities with IC values of 40 and 35 μg/ml, respectively. MTT assay with 3T3-L1 cells demonstrated the non-toxic effect of rutin up to 160 μg/ml. Oil Red O-stained images of rutin-treated 3T3-L1 cells depicted that rutin considerably reduced lipid content and adipogenesis (79.9%), and enhanced glycerol release in 3T3-L1 cells when compared to untreated cells. Rutin significantly ( < 0.05) enhanced glucose uptake in 3T3-L1 adipocytes and also led to reduced levels of leptin but enhanced levels of adiponectin. Western blot analysis of rutin-treated (40 µg/ml) adipocytes showed phosphorylation of AMPK, upregulated expression of Glut-4 (1.31-fold) and UCP-1 (1.47-fold), but downregulated expression of PPAR-γ by 0.73-fold. At transcriptional level, similar trends were observed in the mRNA expression of the above genes, except AMPK. Our results demonstrate that rutin isolated from significantly alleviates lipid content and adipogenesis, and improves glucose uptake through regulating PPAR-γ and AMPK signaling pathways; thus, rutin can be considered as a potential therapeutic agent against adiposity and glucose intolerance.
Medicinal Plants in Peru as a Source of Immunomodulatory Drugs Potentially Useful Against COVID-19
The current COVID-19 pandemic, characterized by a highly contagious severe acute respiratory syndrome, led us to look for medicinal plants as an alternative to obtain new drugs, especially those with immunomodulatory abilities, capable of acting against the pulmonary infection caused by coronavirus 2 (SARS-CoV-2). Despite medical advances with COVID-19 drugs and vaccines, plant-based compounds could provide an array of suitable candidates to test against this virus, or at the very least, to alleviate some symptoms. Therefore, this review explores some plants widely used in Peru that show immunomodulatory properties or, even more, contain phytoconstituents potentially useful to prevent or alleviate the COVID-19 infection. More interestingly, the present review highlights relevant information from those plants to support the development of new drugs to boost the immune system. We used three criteria to choose nine vegetal species, and a descriptive search was then conducted from 1978 to 2021 on different databases, using keywords focused on the immune system that included information such as pharmacological properties, phytochemical, botanical, ethnobotanical uses, and some clinical trials. From these literature data, our results displayed considerable immunomodulation activity along with anti-inflammatory, antiviral, antioxidant, and antitumoral activities. Noticeably, these pharmacological activities are related with a wide variety of bioactive phytoconstituents (mixtures or isolated compounds) which may be beneficial in modulating the overt inflammatory response in severe COVID-19. Further scientific research on the pharmacological activities and clinical utilization of these potential plants are warranted.
Brazilian Brown Propolis: an Overview About Its Chemical Composition, Botanical Sources, Quality Control, and Pharmacological Properties
Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis.
Inhibitory Effects and Related Molecular Mechanisms of Huanglian-Ganjiang Combination Against H1N1 Influenza Virus
Influenza is an infectious acute respiratory disease with complications and a high mortality rate; the effective medicines for influenza therapy are limited. "Huanglian" or , Franch., Ranunculaceae, and "ganjiang" or , Roscoe, Zingiberaceae, combination is clinically used for treating respiratory diseases. HPLC was applied for the quantification of berberine hydrochloride (1.101 mg/ml) and 6-gingerol (38.41 μg/ml) in the HO-soluble extract of the herbal formulation. In this study, the effect of "huanglian"- "ganjiang" extract on influenza virus H1N1-induced acute pulmonary inflammation was evaluated, in addition to the investigation of its anti-influenza mechanism in a mouse model. The analyzed herbal combination inhibited the expression of cytokine IL-6 and stimulated the expression of IL-2 in the serum of influenza virus-infected mice. Meanwhile, the herbal combination downregulated the gene and protein expression levels of TLR3, TLR7, MyD88, RIG-I, MAVS, TRAF3, and NF-κB p65, which are key targets of toll-like and RIG-I-like receptor signaling pathways in mice. In addition, the herbal combination could also promote the combination of intracellular autophagosomes and lysosomes in autophagosome-lysosome formation and improve impaired fusion of autophagosomes and lysosomes by influenza virus. This study suggested that the "huanglian"- "ganjiang" extract may be a candidate therapeutic strategy for the treatment of H1N1 influenza.
Structure-Activity Relationship of Cytotoxic Natural Products from Indonesian Marine Sponges
Indonesian marine natural products have been one of the most promising sources in the race to obtain potential drugs for cancer treatment. One of the primary producers of cytotoxic compounds is sponges. However, there are still limited sources of comprehensive reviews related to the relationship between the structure of isolated compounds and their cytotoxic activity. This review remarks the attempt to provide a preliminary guidance from the perspective of structure-activity relationship and its participation on marine natural products research. This guidance is segregated by the compound's classes and their cytotoxic targets to obtain and organized a reliable summary of inter-study of the isolated compounds and their cytotoxicity. Structure-activity relationship is well-known for its ability to tune the bioactivity of a specific compound, especially on synthetic organic chemistry and study but rarely used on natural product chemistry. The present review is intended to narrow down the endless possibilities of cytotoxicity by giving a predictable structure-activity relationship for active compounds. In addition, bioactive framework leads were selected by uncovering a noticeable structure-activity relationship with the intervention of cytotoxic agents from natural sources, especially Indonesian marine sponge.
Structural Diversity and Biological Potential of Alkaloids from the Genus , Amaryllidaceae: an Update
The subfamily Amaryllidoideae, Amaryllidaceae, presents an exclusive group of structures known as Amaryllidaceae alkaloids, which have a broad spectrum of biological activities. These plants are classified into 59 genera, including Herb., which comprises approximately 60 species distributed mainly in South America, being widely used as ornamental plants due to the beauty of its flowers. This review presents an update about the alkaloid profiling of extracts published between 2012 and 2021, as well as an approach to the biological potential of these compounds.
Pharmacological Activities and Pharmacokinetics of Glycycoumarin
Glycycoumarin is a representative coumarin compound with significant pharmacological activities isolated from Fisch., Fabaceae. Studies have shown that glycycoumarin has many biological activities, such as anti-tumor, liver protection, antispasmodic, antibacterial, and antivirus. However, the poor solubility of glycycoumarin in water and the accompanying reactions of the phase I (hydroxylation) and II (glucuronidation) metabolism limit its druggability, which manifests as low absorption in the body after oral administration and low free drug concentration, ultimately leading to low bioavailability. Therefore, a comprehensive review of the pharmacological effects and pharmacokinetics of glycycoumarin is presented to provide a reference for further research and application as a therapeutic agent.
Antiviral Properties of Baicalin: a Concise Review
Baicalin is one of the bioactive flavonoid glycosides isolated from the dried root of Georgi, Lamiaceae, with antiviral properties. In recent years, the antiviral activity of baicalin has been widely investigated to explore its molecular mechanism of action. In this mini-review, the molecular mechanisms of action of baicalin as an antiviral agent are evaluated, which included three categories: the inhibition or stimulation of JAK/STAT, TLRs, and NF-κB pathways; up or down modulation of the expression levels of IFN, IL, SOCS1/3, PKR protein, Mx1 protein, and AP-1 protein; and inhibition of cell apoptosis caused by virus infection. In addition, clinical studies of baicalin are also discussed. This literature search suggested that baicalin can serve as a potential candidate for the development of a novel broad-spectrum antiviral drug.
Nano-Nutraceuticals for Health: Principles and Applications
The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation.
The Role of Micronutrients to Support Immunity for COVID-19 Prevention
The World Health Organization declared the novel coronavirus, named as SARS-CoV-2, as a global pandemic in early 2020 after the disease spread to more than 180 countries leading to tens of thousands of cases and many deaths within a couple of months. Consequently, this paper aims to summarize the evidence for the relationships between nutrition and the boosting of the immune system in the fight against the disease caused by SARS-CoV-2. This review, in particular, assesses the impact of vitamin and mineral supplements on the body's defence mechanisms against SARS-CoV-2. The results revealed that there is a strong relationship between the ingestion of biological ingredients like vitamins C-E, and minerals such as zinc, and a reduction in the effects of coronavirus infection. These can be received from either nutrition rich food sources or from vitamin supplements. Furthermore, these macromolecules might have roles to play in boosting the immune response, in the healing process and the recovery time. Hence, we recommend that eating healthy foods rich in vitamins C-E with zinc and flavonoids could boost the immune system and consequently protect the body from serious infections.
Disease Prevention and Treatment Using β-Carotene: the Ultimate Provitamin A
Humans being unable to synthesize beta-carotene, the provitamin A, depend on external sources as its supplement. Health benefits and dietary requirements of beta-carotene are interrelated. This orange-red coloured pigment has been enormously examined for its capacity to alleviate several chronic diseases including various types of cancer, cystic fibrosis, as well as COVID-19. However, this class of phytoconstituents has witnessed a broad research gap due to several twin conclusions that have been reported. Natural sources for these compounds along with their extraction methods have been mentioned. The current communication aims at contributing to the global scientific literature on beta-carotene's application in prevention and treatment of lifestyle diseases.
