Scale and strength oak-mesophyte interactions in a transitional oak-hickory forest
Forests in eastern North America are undergoing rapid compositional changes as they experience novel climate, disturbance, and pest conditions. One striking pattern is the replacement of canopy oaks spp.) by mesic, fire-sensitive, shade-tolerant species like red maple . To gain insight into the successional patterns driving stand-level canopy oak replacement we ask two questions: (i) What is the spatial association of oak and mesophyte recruitment compared to oak and mesophyte overstory individuals, and (ii) How do oaks and mesophytes differentially respond to canopy openings. We analyzed census data from a 23 ha forest plot surveyed in 2003, 2008 and 2014. We show that oak recruits are negatively associated with overstory red maples and black cherries , while mesophytic recruits were positively associated with overstory oaks. Second, we found that proximity to a dead overstory tree increased growth and survival for black cherries, increased growth for red maples, but had no effect on oaks. Black cherries and red maples are therefore better suited than oaks to take advantage of canopy openings and the moderate light available under adult oaks. These same fine scale competitive processes are contributing to canopy oak replacement across eastern North America.
Dimensional Analysis on Forest Fuel Bed Fire Spread
A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.
Age-dependent climate-growth relationships and regeneration of in a drought-prone mixed coniferous forest in the Alps
Within dry inner Alpine environments climate warming is expected to affect the development of forest ecosystems by changing species composition and inducing shifts in forest distribution. By applying dendroecological techniques we evaluated climate sensitivity of radial growth and establishment of in a drought-prone mixed-coniferous forest in the Austrian Alps. Time series of annual increments were developed from > 220 trees and assigned to four age classes. While radial growth of old trees (mean age 121 and 174 yr) responded highly significant to May-June precipitation, young trees (mean age 28 and 53 yr) were insensitive to precipitation in the current year. Because tree age was closely correlated to height and diameter ( = 0.709 and 0.784, respectively), we relate our findings to the increase in tree size rather than age . Synchronicity found among trend in basal area increment and tree establishment suggests that canopy openings increased light and water availability, which favoured growth and establishment of moderately shade-tolerant . We conclude that although is able to regenerate at this drought prone site, increasing inter-tree competition for water in dense stands gradually lowers competitive strength and restricts scattered occurrence to dry-mesic sites.
Temporal dynamics of non-structural carbohydrates and xylem growth in Pinus sylvestris exposed to drought
Wood formation requires a continuous supply of carbohydrates for structural growth and metabolism. In the montane belt of the central Austrian Alps we monitored the temporal dynamics of xylem growth and non-structural carbohydrates (NSC) in stem sapwood of Pinus sylvestris L. during the growing season 2009, which was characterized by exceptional soil dryness within the study area. Soil water content dropped below 10 % at the time of maximum xylem growth end of May. Histological analyses have been used to describe cambial activity and xylem growth. Determination of NSC was performed using specific enzymatic assays revealing that total NSC ranged from 0.8 to 1.7 % dry matter throughout the year. Significant variations (P < 0.05) of the size of the NSC pool were observed during the growing season. Starch showed persistent abundance throughout the year reaching a maximum shortly before onset of late wood formation in mid-July. Seasonal dynamics of NSC and xylem growth suggest that (i) high sink activity occurred at start of the growing season in spring and during late wood formation in summer and (ii) there was no particular shortage in NSC, which caused P. sylvestris to draw upon stem reserves more heavily during drought in 2009.
Effects of shade and root confinement on the expression of plagiotropic growth in juvenile-origin Douglas-fir rooted cuttings
The purpose of this experiment was to determine why juvenile-origin Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) rooted cuttings, which remain plagiotropic (branchlike) when grown in containers in shaded glasshouses, become orthotropic (vertical) after they are transplanted to an outdoor environment. Plagiotropic rooted cuttings (mean angle from vertical = 45-50 degrees) from three full-sib families were transplanted into an outdoor nursery and subjected to four treatments consisting of a factorial of (1) shaded or unshaded and (2) bareroot or confined roots. After two growing seasons, treatments had significantly affected plant size and biomass in the order unshaded-bareroot > shaded-bareroot > unshaded-confined > shaded-confined, but plants in all treatments had become nearly orthotropic. It is concluded that neither shading nor root confinement is, but other glasshouse environmental conditions are, responsible for the persistence of plagiotropic growth.
