Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic
The speed by which the COVID-19 pandemic spread throughout the world caught some national and local governments unprepared. Healthcare systems found themselves struggling to increase capacity and procure key supplies, such as personal protective equipment. Protective face shields became essential for healthcare professionals. However, most hospitals and healthcare facilities did not have them in adequate quantities. The urgency of producing and delivering face shields increased as the number of COVID-19 cases rapidly multiplied. This was the situation that we encountered in the city and province of Burgos (Spain). Since there was no time to wait for a large manufacturer to produce face shields, private citizens and small companies volunteered to make them using technologies such as 3D printers. Nonprofits, citizens, and governments agencies volunteered to deliver materials to the face shield makers and to pick up and deliver the face shields to health centers and other locations where they were needed. This resulted in a vehicle routing problem with some special characteristics that made it different from models used for commercial purposes. We describe the development of a heuristic to find feasible and efficient routes for this problem. We highlight the advantages of using heuristics in an emergency context like the one triggered by the COVID-19 pandemic. In particular, the heuristic approach allowed us to design, implement, test, and delivery a routing system in less than 1 week from the time that the local government contacted us with what they described as a logistics nightmare.
Dynamic pricing with demand disaggregation for hotel revenue management
In this paper we present a novel approach to the dynamic pricing problem for hotel businesses. It includes disaggregation of the demand into several categories, forecasting, elastic demand simulation, and a mathematical programming model with concave quadratic objective function and linear constraints for dynamic price optimization. The approach is computationally efficient and easy to implement. In computer experiments with a hotel data set, the hotel revenue is increased by about 6% on average in comparison with the actual revenue gained in a past period, where the fixed price policy was employed, subject to an assumption that the demand can deviate from the suggested elastic model. The approach and the developed software can be a useful tool for small hotels recovering from the economic consequences of the COVID-19 pandemic.
Incomplete MaxSAT approaches for combinatorial testing
We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays with Constraints of minimum length, referred to as the Covering Array Number problem. This problem is central in Combinatorial Testing for the detection of system failures. In particular, we show how to apply Maximum Satisfiability (MaxSAT) technology by describing efficient encodings for different classes of complete and incomplete MaxSAT solvers to compute optimal and suboptimal solutions, respectively. Similarly, we show how to solve through MaxSAT technology a closely related problem, the Tuple Number problem, which we extend to incorporate constraints. For this problem, we additionally provide a new MaxSAT-based incomplete algorithm. The extensive experimental evaluation we carry out on the available Mixed Covering Arrays with Constraints benchmarks and the comparison with state-of-the-art tools confirm the good performance of our approaches.
Heuristic-based allocation of supply constrained blood platelets in emerging economies
Platelets are valuable, but highly perishable, blood components used in the treatment of, among others, viral dengue fever, blood-related illness, and post-chemotherapy following cancer. Given the short shelf-life of 3-5 days and a highly volatile supply and demand pattern, platelet inventory allocation is a challenging task. This is especially prevalent in emerging economies where demand variability is more pronounced due to neglected tropical diseases, and a perpetual shortage of supply. The consequences of which have given rise to an illegal 'red market'. Motivated by experience at a regional hospital in India, we investigate the problem of platelet allocation among three priority-differentiated demand streams. Specifically we consider a central hospital which, in addition to internal emergency and non-emergency requests, faces external demand from local clinics. We analyze the platelet allocation decision from a social planner's perspective and propose an allocation heuristic based on revenue management (RM) principles. The objective is to maximize total social benefit in a highly supply-constrained environment. Using data from the aforementioned Indian hospital as a case study, we conduct a numerical simulation and sensitivity analysis to evaluate the allocation heuristic. The performance of the RM-based policy is evaluated against the current sequential first come, first serve policy and two fixed proportion-based rationing policies. It is shown that the RM-based policy overall dominates, serves patients with the highest medical urgency better, and can curtail patients' need to procure platelets from commercial sources.
Heuristics for the run-length encoded Burrows-Wheeler transform alphabet ordering problem
The Burrows-Wheeler Transform (BWT) is a string transformation technique widely used in areas such as bioinformatics and file compression. Many applications combine a run-length encoding (RLE) with the BWT in a way which preserves the ability to query the compressed data efficiently. However, these methods may not take full advantage of the compressibility of the BWT as they do not modify the alphabet ordering for the sorting step embedded in computing the BWT. Indeed, any such alteration of the alphabet ordering can have a considerable impact on the output of the BWT, in particular on the number of runs. For an alphabet containing characters, the space of all alphabet orderings is of size . While for small alphabets an exhaustive investigation is possible, finding the optimal ordering for larger alphabets is not feasible. Therefore, there is a need for a more informed search strategy than brute-force sampling the entire space, which motivates a new heuristic approach. In this paper, we explore the non-trivial cases for the problem of minimizing the size of a run-length encoded BWT (RLBWT) via selecting a new ordering for the alphabet. We show that random sampling of the space of alphabet orderings usually gives sub-optimal orderings for compression and that a local search strategy can provide a large improvement in relatively few steps. We also inspect a selection of initial alphabet orderings, including ASCII, letter appearance, and letter frequency. While this alphabet ordering problem is computationally hard we demonstrate gain in compressibility.
