PREVALENCE AND INCIDENCE OF FOUR COMMON BEAN ROOT ROTS IN UGANDA
Root rots are one of the main biotic constraints to common bean ( L.) production, causing losses estimated at 221 000 metric tons a year in sub-Saharan Africa. Until recently, root rots in Ugandan common bean agroecologies were mostly caused by and spp., especially in high altitude areas. But now, severe root rots are observed in low and medium altitude agroecologies characterized by dry and warm conditions. The objective of our study was therefore to ascertain the current prevalence and incidence of common bean root rot diseases in Ugandan common bean agroecologies. Our results show that root rots were present in all seven agroecologies surveyed. Overall, the most rampant root rot was southern blight caused by Sacc., followed by root rots caused by spp., spp. and , respectively. Our study clearly showed the influence of environmental conditions on the prevalence and incidence of common bean root rots. While Fusarium and Pythium root rots are favoured under low air temperature and high air humidity in highland areas, high incidence of southern blight is favoured by warm and moist conditions of lowland areas. The prevalence and incidence of common bean root rots was mapped, providing a reliable baseline for future studies. Similarly, hotspots identified for common bean root rots will be a very useful resource for evaluation of germplasm and breeding lines for resistance to root rots.
VARIETAL IDENTIFICATION IN HOUSEHOLD SURVEYS: RESULTS FROM THREE HOUSEHOLD-BASED METHODS AGAINST THE BENCHMARK OF DNA FINGERPRINTING IN SOUTHERN ETHIOPIA
Accurate crop varietal identification is the backbone of any high-quality assessment of outcomes and impacts. Sweetpotato () varieties have important nutritional differences, and there is a strong interest to identify nutritionally superior varieties for dissemination. In agricultural household surveys, such information is often collected based on the farmer's self-report. In this article, we present the results of a data capture experiment on sweet potato varietal identification in southern Ethiopia. Three household-based methods of identifying varietal adoption are tested against the benchmark of DNA fingerprinting: (A) Elicitation from farmers with basic questions for the most widely planted variety; (B) Farmer elicitation on five sweet potato phenotypic attributes by showing a visual-aid protocol; and (C) Enumerator recording observations on five sweet potato phenotypic attributes using a visual-aid protocol and visiting the field. In total, 20% of farmers identified a variety as improved when in fact it was local and 19% identified a variety as local when it was in fact improved. The variety names given by farmers delivered inconsistent and inaccurate varietal identities. Visual-aid protocols employed in methods B and C were better than those in method A, but greatly underestimated the adoption estimates given by the DNA fingerprinting method. Our results suggest that estimating the adoption of improved varieties with methods based on farmer self-reports is questionable and point towards a wider use of DNA fingerprinting in adoption and impact assessments.
DOES SIZE MATTER? A CRITICAL REVIEW OF META-ANALYSIS IN AGRONOMY
Intended to test broad hypotheses and arrive at unifying conclusions, meta-analysis is the process of extracting, assembling, and analyzing large quantities of data from multiple publications to increase statistical power and uncover explanatory patterns. This paper describes the ways in which meta-analysis has been applied to support claims and counter-claims regarding two topics widely debated in agricultural research, namely organic agriculture (OA) and conservation agriculture (CA). We describe the origins of debate for each topic and assess prominent meta-analyses considering data-selection criteria, research question framing, and the interpretation and extrapolation of meta-analytical results. Meta-analyses of OA and CA are also examined in the context of the political economy of development-oriented agricultural research. Does size matter? We suggest that it does, although somewhat ironically. While meta-analysis aims to pool all relevant studies and generate comprehensive databases from which broad insights can be drawn, our case studies suggest that the organization of many meta-analyses may affect the generalizability and usefulness of research results. The politicized nature of debates over OA and CA also appear to affect the divergent ways in which meta-analytical results may be interpreted and extrapolated in struggles over the legitimacy of both practices. Rather than resolving scientific contestation, these factors appear to contribute to the ongoing debate. Meta-analysis is nonetheless becoming increasingly popular with agricultural researchers attracted by the power for the statistical inference offered by large datasets. This paper consequently offers three suggestions for how scientists and readers of scientific literature can more carefully evaluate meta-analyses. First, the ways in which papers and data are collected should be critically assessed. Second, the justification of research questions, framing of farming systems, and the scales at which research results are extrapolated and discussed should be carefully evaluated. Third, when applied to strongly politicized topics situated in an arena of scientific debate, as is the case with OA and CA, more conservative interpretations of meta-analytical results that recognize the socially and politically embedded nature of agricultural research is are needed.
LEGUME-MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA
Soil nutrient constraints coupled with erratic rainfall have led to poor crop yields and occasionally to crop failure in sole cropping in the Guinea savanna of West Africa. We explored different maize-grain legume diversification and intensification options that can contribute to mitigating risks of crop failure, increase crop productivity under different soil fertility levels, while improving soil fertility due to biological N-fixation by the legume. There were four relay patterns with cowpea sown first and maize sown at least 2 weeks after sowing (WAS) cowpea; two relay patterns with maize sown first and cowpea sown at least 3 WAS maize in different spatial arrangements. These were compared with groundnut-maize, soybean-maize, fallow-maize and continuous maize rotations in fields high, medium and poor in fertility at a site each in the southern (SGS) and northern (NGS) Guinea savanna of northern Ghana. Legumes grown in the poorly fertile fields relied more on N-fixation for growth leading to generally larger net N inputs to the soil. Crop yields declined with decreasing soil fertility and were larger in the SGS than in the NGS due to more favourable rainfall and soil fertility. Spatial arrangements of relay intercrops did not have any significant impact on maize and legume grain yields. Sowing maize first followed by a cowpea relay resulted in 0.18-0.26 t ha-1 reduction in cowpea grain yield relative to cowpea sown from the onset. Relaying maize into cowpea led to a 0.29-0.64 t ha-1 reduction in maize grain yield relative to maize sown from the onset in the SGS. In the NGS, a decline of 0.66 and 0.82 t ha-1 in maize grain yield relative to maize sown from the onset was observed due to less rainfall received by the relay maize. Groundnut and soybean induced 0.38-1.01 t ha-1 more grain yield of a subsequent maize relative to continuous maize, and 1.17-1.71 t ha-1 more yield relative to relay maize across both sites. Accumulated crop yields over both years suggest that sowing maize first followed by cowpea relay is a promising ecological intensification option besides the more common legume-maize rotation in the Guinea savanna, as it was comparable with soybean-maize rotation and more productive than the other treatments.
