LIMNOLOGY

Can botanic gardens serve as refuges for taxonomic and functional diversity of Odonata? The case of the botanic garden of Castilla-La Mancha (Spain)
Pinilla-Rosa M, García-Saúco G, Santiago A, Ferrandis P and Méndez M
In a scenario with declining biodiversity and habitat loss, botanic gardens could serve as refuges for invertebrates, but the opportunities they offer for animal conservation are still poorly understood. Odonata is a good model group for conservation studies, because it includes threatened species and responses to habitat disturbance are well documented. In this study, we assessed the role of the botanic garden of Castilla-La Mancha in Spain as a refuge for members of Odonata by analysing their taxonomic and functional diversity. We explored if the small size of the botanic garden might constrain the taxonomic diversity of Odonata and if low habitat diversity might limit their functional diversity. We sampled adult Odonata from five water bodies along a gradient of human impact and characterized the Odonata communities based on 12 functional traits in Odonata. We used a species-area relationship to control for differences in the size of water bodies. Compared with natural lakes, the Odonata communities contained less species and their functional diversity was lower in the botanic garden ponds, where generalist species were basically hosted. Despite these limitations, the botanic garden ponds hosted the number of species expected for natural water bodies with the moderate surface area and functional diversity, thereby demonstrating that they are a valuable habitat for Odonata in an urban environment. Appropriate management involving the removal of exotic fish and habitat diversification, including creating lotic environments, would increase the taxonomic and functional diversity of Odonata in this urban system.
Morphological and geochemical variations of (Ostracoda) from modern waters of the northern Neotropics
Meyer J, Wrozyna C, Gross M, Leis A and Piller WE
The variability of modern and (Ostracoda) from the northern Neotropics were investigated in order to understand site specific influences on the isotopic composition of their valves (δO, δC) in comparison to their host water and to connect this to morphological features of their valves (valve size, nodosity). was found in a stream (Shell Creek, Florida) and a slightly brackish lake (Laguna del Rincon, Dominican Republic; salinity <0.7 psu) while occurred in a coastal lake with polyhaline waters (Parrotee Pond, Jamaica; salinity: >20 psu). Valve size and position of nodes differed between the two species. A reverse temperature dependency have been considered to influence Shell length (seasonally in Shell Creek, summer: 1076 µm; winter: 1092 µm, supposedly permanently in Laguna del Rincon, 1035 µm). But, regarding the small dataset other factors could not be excluded to influence ostracod valve size. A decline of node frequency of is mainly related to an increase in salinity. Isotopic values of ostracod valves reflect the trend in stable isotopes of their host water. Variations in δO and δC values signify differences in their host water. Offsets of ostracod valves to a theoretical calcite precipitated in their host water with an uncertain time lag (+0.015 to +2.63 ‰) needs to be clarified. This study presents a contribution to the understanding of environmental influences on modern ostracod shell characters as basis for paleontological applications.
Influence of environmental settings, including vegetation, on speciation of the redox-sensitive elements in the sediments of monomictic Lake Kinneret
Kamyshny A, Klein R, Eckert W and Avetisyan K
The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret. We measured roots content, porosity, and chemical parameters including pH, sulfur, iron and manganese speciation in the sediments from the shore, littoral and sublittoral zones with and without vegetation. Our results show that at ≥ 12 m water depth, the upper 10 cm of the sediments are affected by the active sulfur cycling with concentrations of hydrogen sulfide > 70 μM near the sediment-water interface. Speciation of sulfur, iron, and manganese in the upper 10 cm of littoral sediments, which are covered by < 20 cm of water, are affected by their permeability and, to a lesser extent, by roots penetration. In the case when sediments are not covered by water, oxygen penetration to the sediments by desiccation is an additional important control of the redox zonation in the surface sediments. In the shore sediments, despite relatively high concentrations of sulfate in the pore-waters, sulfur cycling may be described as "cryptic" as expressed by very low concentrations of hydrogen sulfide in the pore-waters. This is most likely a result of its fast reoxidation by the abundant highly reactive Fe(III) and Mn(IV) phases.