The fate of enterohemorrhagic on alfalfa and fenugreek seeds and sprouts as affected by ascaroside #18 treatments
Alfalfa and fenugreek sprouts are healthy foods, but they are occasionally contaminated with bacterial pathogens and serve as vehicles for transmitting foodborne illnesses. This study examined the efficacy of ascaroside (ascr)#18 treatment for the control of enterohemorrhagic (EHEC) growth on sprouts. Commercial alfalfa and fenugreek seeds were decontaminated with 20,000 ppm of NaClO, and residual chlorine was neutralized with Dey-Engley broth. Decontaminated seeds were treated with 1 mM or 1 μM ascr#18, a plant immunity modulator, before being dried and mixed with sandy soil inoculated with F4546 or BAA-2326 at 10-10 CFU/g. The inoculated seeds were sprouted on 1% water agar at 25ºC for 7 days in the dark. Seed or sprout samples were collected on days 0, 1, 3, 5, and 7 for enumeration of bacterial populations. Data was fit into the general linear model and analyzed using Fisher's least significant different test of the statistical analysis software. Treatment with ascr#18 significantly ( ≤ 0.05) reduced the cell population of EHEC on sprouts. The mean EHEC populations in the 1 mM or 1 μM treatment groups were 3.31 or 1.56 log CFU/g lower compared to the control groups. Besides treatment, sprout seed type and sprouting time were also significant independent variables influencing the growth of EHEC, according to the results of type III error analysis. However, EHEC strain type was not a significant independent variable. The study suggests that ascr#18 could be potentially used to control EHEC contamination and improve the microbial safety of sprouts.
Conventional water bath heating on undried brewer's spent grain: Functionality, fatty acids, volatiles, polyphenolic and antioxidant properties
Brewers' spent grain (BSG) contains bioactive compounds. It was hypothesized that heating treatments using conventional water bath heating (CWH) on brewers' spent grain (BSG) would modify the functionality, chemical constituents and antioxidant activities of BSG. Different temperatures and time exposures (80, 90 and 100 °C at 15, 30 and 60 min) were applied on fresh undried BSG. CWH at 80 °C increased the amount of flavan-3-ols, while 100 °C at 30 and 60 min improved the ABTS (2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) value. CWH significantly declined saturated fatty acid and enhanced the poly-unsaturated fatty acid. Moreover, CWH discharged pungent, floral, spice and mushroom odor perceptions and formed fruity, sweet and pleasant odor perceptions, as well as essential-oil-related compounds. Additionally, CWH improved water-holding and oil-holding capacities. In conclusion, CWH as a low-cost treatment improved the functionality, fatty acid composition and aromatic profile of BSG.
Lime and orange essential oils and d-limonene as a potential COVID-19 inhibitor: Computational, , and cytotoxicity analysis
The COVID-19 pandemic has substantially impacted the world health systems, causing public health concerns, and the search for new compounds with antiviral activity is of extreme interest. Natural molecules with bioactive potential are a trend, with essential oils (Eos) being the focus of recent studies. Thus, this study evaluates the d-limonene inhibitory activities in the viral genome of SARS-CoV-2 and analyzes the cytotoxic potential and safety profile of d-limonene and lime and orange EOs with a high content of d-limonene. The EOs were extracted and characterized, and the in chemico computational analysis for the determination as a potential anti-SARS-CoV-2 was performed with d-limonene, the major compound in EOs. The cytotoxicity analysis of EOs and d-limonene was carried out with MRC-5 and HaCaT, and the preliminary safety profile was also evaluated by the HET-CAM assay. d-limonene was suggested as a promising compound for anti-SARS-CoV-2 research, since the molecule does not provide mutagenic and cytotoxic fragments, and does not have irritating potential when diluted, in addition to having favorable pharmacokinetic characteristics, through analysis. Collectively, the results reveal the antiviral potential of lime and orange EOs, as well as their major compound. In this sense, further studies should be conducted to understand the antiviral mechanisms.
Effects of E-beam irradiation on the physicochemical properties of Atlantic cod ()
Electron beam (E-beam) irradiation can effectively inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cold-chain seafood. This study evaluated the effects of E-beam irradiation at doses killing SARS-CoV-2 on quality indicators of Atlantic cod. The cod samples were exposed to 0, 2, 4, 7, and 10 kGy E-beam irradiation, and nutrition, texture, color, and sensory attributes were investigated. The results showed that E-beam irradiation significantly increased thiobarbituric acid (TBA) value and decreased hardness, chewiness, and value of Atlantic cod ( < 0.05). E-beam irradiation with 10 kGy significantly lowered total volatile base nitrogen (TVB-N) and reducing sugar content while increasing moisture and ash content ( < 0.05). A significant color change was observed after irradiation with 2 kGy-7 kGy E-beam ( < 0.05). E-beam irradiation had no effects on sensory attributes ( > 0.05). A dose of 4 kGy was recommended considering the keeping quality in Atlantic cod.
Nutraceutical prospects of against the infectious viruses
The novel enveloped β-coronavirus SARS-CoV-2 (COVID-19) has offered a surprising health challenge all over the world. It develops severe pneumonia leading to acute respiratory distress syndrome (ARDS). Like SARS-COV-2, other encapsulated viruses like HIV, HSV, and influenza have also offered a similar challenge in the past. In this regard, many antiviral drugs are being explored with varying degrees of success to combat the associated pathological conditions. Therefore, upon scientific validation & development, these antiviral phytochemicals can attain a futuristic nutraceutical prospect in managing different encapsulated viruses. (HC) is widely reported for activities such as antioxidant, anti-inflammatory, and antiviral properties. The major antiviral bioactive components of HC include essential oils (methyl n-nonyl ketone, lauryl aldehyde, capryl aldehyde), flavonoids (quercetin, rutin, hyperin, quercitrin, isoquercitrin), and alkaloids (norcepharadione B) & polysaccharides. HC can further be explored as a potential nutraceutical agent in the therapy of encapsulated viruses like HIV, HSV, and influenza. The review listed various conventional and green technologies that are being employed to extract potent phytochemicals with diverse activities from the HC. It was indicated that HC also inhibited molecular targets like 3C-like protease (3CLPRO) and RNA-dependent RNA polymerase (RdRp) of COVID-19 by blocking viral RNA synthesis and replication. Antioxidant and hepatoprotective effects of HC have been evident in impeding complications from marketed drugs during antiviral therapies. The use of HC as a nutraceutical is localized within some parts of Southeast Asia. Further technological advances can establish it as a nutraceutical-based functional food against pathogenic enveloped viruses like COVID 19.
Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms
Currently, antiviral drugs and/or vaccines are not yet available to treat or prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we narrated the available data, from credible publishers, regarding the possible role of polyphenols and natural extracts-containing polyphenols in the prevention of coronavirus disease 2019 (COVID-19), and their immune-boosting properties. It was revealed that polyphenols could be considered as promising biologically active substances for the prevention of COVID-19. The underlying potential mechanism behind this action is mostly due to the antiviral activities and the immune-regulation functions of polyphenols against COVID-19-infections. Antivirus polyphenolic-based medications can mitigate SARS-CoV-2-enzymes, which are vital for virus duplication and infection. It was also found that triterpenoid, anthraquinone, flavonoids, and tannins are possible keys to scheming antiviral therapies for inhibiting SARS-CoV-2-proteases. The identified pharmacophore structures of polyphenols could be utilized in the explanation of novel -COVID-19 designs. The advantage of using mixtures containing polyphenols is related to the high-safety profile without having major side-effects, but further randomized controlled trials are required in the upcoming studies.
Flavonoids from dark chocolate and (-)-epicatechin ameliorate high-fat diet-induced decreases in mobility and muscle damage in aging mice
Age-related muscle decline, when associated with obesity, leads to adverse outcomes with increased risks for falling, loss of independence, disability and risk of premature mortality. The aim of this study was to assess the potential beneficial effects of flavonoids in improving the age-/high-fat-diet-induced decrease in physical activity/capacity related to the onset of skeletal muscle decline. The effects of the administration of a cocoa beverage enriched with flavanols or pure (-)-epicatechin for 5 wk in a model of physical activity decline induced by the ingestion of a high-fat diet (60% fat) in middle-age mice were evaluated. The results showed that both products, the cocoa beverage enriched with flavanols and pure (-)-epicatechin, improved physical performance evaluated with the hang-wire, inverted-screen, and weight-lifting tests and dynamometry compared with the performance of the controls. The beverage and (-)-epicatechin increased the follistatin/myostatin ratio and increased the expression of myocyte enhancer factor 2A (MEF2A), suggesting an effect on molecular modulators of growth differentiation. Furthermore, the beverage and (-)-epicatechin decreased the expression of O-type fork-head transcription factor (FOXO1A) and muscle ring finger 1 (MURF1) markers of the skeletal muscle ubiquitin-proteasome degradation pathway.
Fatty acid metabolism: Implications for diet, genetic variation, and disease
Cultures across the globe, especially Western societies, are burdened by chronic diseases such as obesity, metabolic syndrome, cardiovascular disease, and cancer. Several factors, including diet, genetics, and sedentary lifestyle, are suspected culprits to the development and progression of these health maladies. Fatty acids are primary constituents of cellular physiology. Humans can acquire fatty acids by synthesis from carbohydrate or protein sources or by dietary consumption. Importantly, regulation of their metabolism is critical to sustain balanced homeostasis, and perturbations of such can lead to the development of disease. Here, we review and dietary fatty acid metabolism and highlight recent advances in our understanding of the relationship between dietary influences and genetic variation in fatty acid metabolism and their role in chronic diseases.
