A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps
Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.
The structure of the Hallstatt evaporite body (Northern Calcareous Alps, Austria): A compressive diapir superposed by strike-slip shear?
Based on old detailed mining maps and own observations in the Hallstatt salt mine, we reinterpret the structure of the Hallstatt evaporite body of the Upper Permian to Lower Triassic Haselgebirge Fm. within the Northern Calcareous Alps (NCA). The Haselgebirge Fm. represents a rocksalt mylonite with abundant lenses of sulphates, mudstones and limestones. In comparison to published results of analogue modeling we interpret the present shape of the Hallstatt body as a WNW-ESE elongated compressive teardrop-like diapir. This is overprinted by NNE-SSW shortening and dominantly sinistral shearing along a W-trending shear zone. The internal structure shows steeply dipping rock units and foliation. Earlier dextral ductile shear fabrics of likely late Early Cretaceous age are preserved in sulphate rocks and are subsequently overprinted by mylonitic fabrics in rocksalt and cataclastic fabrics in other rocks. The low strength of halite results in recent subvertical shortening and a strain rate [Formula: see text] of 8 × 10 [s] is deduced from deformed subhorizontal boreholes. This value is similar to such strain rates (10 to 10 s) estimated by the halite grain size distribution from other salt mines in the NCA and thus indicative of sub-recent formation of the halite microfabrics.
The lateral boundary of a metamorphic core complex: The Moutsounas shear zone on Naxos, Cyclades, Greece
We describe the structure, microstructures, texture and paleopiezometry of quartz-rich phyllites and marbles along N-trending Moutsounas shear zone at the eastern margin of the Naxos metamorphic core complex (MCC). Fabrics consistently indicate a top-to-the-NNE non-coaxial shear and formed during the main stage of updoming and exhumation between ca. 14 and 11 Ma of the Naxos MCC. The main stage of exhumation postdates the deposition of overlying Miocene sedimentary successions and predates the overlying Upper Miocene/Pliocene conglomerates. Detailed microstructural and textural analysis reveals that the movement along the Moutsounas shear zone is associated with a retrograde greenschist to subgreenschist facies overprint of the early higher-temperature rocks. Paleopiezometry on recrystallized quartz and calcite yields differential stresses of 20-77 MPa and a strain rate of 10-10 s at 350 °C for quartz and ca. 300 °C for calcite. Chlorite geothermometry of the shear zone yields two temperature regimes, 300-360 °C, and 200-250 °C. The lower temperature group is interpreted to result from late-stage hydrothermal overprint.
Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps
In the Hallstatt salt mine (Austria), polyhalite rocks occur in 0.5-1 m thick and several metre long tectonic lenses within the protocataclasite to protomylonite matrix of the Alpine Haselgebirge Fm.. Thin section analysis of Hallstatt polyhalites reveals various fabric types similar to metamorphic rocks of crust-forming minerals, e.g. quartz and feldspar. Polyhalite microfabrics from Hallstatt include: (1) polyhalite mylonites, (2) metamorphic reaction fabrics, (3) vein-filling, fibrous polyhalite and (4) cavity-filling polyhalite. The polyhalite mylonites contain a wide range of shear fabrics commonly known in mylonitic quartzo-feldspathic shear zones within the ductile crust and developed from a more coarse-grained precursor rock. The mylonites are partly overprinted by recrystallised, statically grown polyhalite grains. Metamorphic reaction fabrics of polyhalite fibres between blödite (or astrakhanite) [NaMg(SO).4HO] and anhydrite have also been found. According to previous reports, blödite may occur primarily as nodules or intergrown with löweite. Reaction fabrics may have formed by exsolution, (re-)crystallisation, parallel growth or replacement. This fabric type was only found in one sample in relation with the decomposition of blödite at ca. 61 °C in the presence of halite or slightly above, testifying, therefore, a late stage prograde fabric significantly younger than the main polyhalite formation.
Preferential cataclastic grain size reduction of feldspar in deformation bands in poorly consolidated arkosic sands
This study presents microstructural as well as bulk and mineral chemical investigations of deformation bands in uncemented, friable arkosic sands of Miocene age (Vienna Basin, Austria). Our microstructural study indicates grain size reduction by grain flaking in deformation bands with small offsets (0.5-8 cm), and dominant intragranular fracturing and cataclasis of altered feldspar grains at larger displacements (up to 60 cm). Relative to quartz, the sericitized feldspar grains are preferably fractured and abraded, which additionally leads to an enrichment of mainly phyllosilicates by mechanical expulsion from feldspar. Both cataclasis of quartz and feldspar grains and enrichment of phyllosilicates result in grain size reduction within the deformation bands. The measured reduction in porosity of up to 20% is in some cases associated with a permeability reduction, reflected in the retention of iron-oxide rich fluids along deformation bands. These deformation bands formed at very shallow burial depths in unconsolidated sediments indicate that fault sealing may occur in the absence of chemical alteration of the deformation bands and lead to a compartmentalization of a groundwater or hydrocarbon reservoir.
Displacement-length scaling of brittle faults in ductile shear
Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.
Structure and evolution of a rocksalt-mudrock-tectonite: The haselgebirge in the Northern Calcareous Alps
The Northern Calcareous Alps are part of the Eastern Alps in Austria and Germany. The Mesozoic units of this fold-and-thrust belt were detached, thrusted and stacked along the evaporitic Haselgebirge Formation. Exposed in salt mines, rocksalt and mudrock form a two component tectonite: The rock type "haselgebirge" consists of 10-70 wt % halite with silt- to gravel- or block-sized components within a halite matrix, and the "kerngebirge" with >70 wt % halite. All rock types studied are fault rocks. By use of a temperature-independent subgrain size piezometer, the paleo-differential stress of halite was calculated at ca. 2.5 MPa in Altaussee and ca. 4.5 MPa in Berchtesgaden. Including data from a grain-size piezometer, temperatures were estimated at ca. 150 ± 20 °C and 110 ± 10 °C. This implies very high strain rates, which are about 10-10 s. During the tectonic movement, the halite deformed, recrystallized, and crystallized as veins in mudrock fractures. We interpret high overpressure of the pore fluid to have significantly contributed to fracturing of the mudrock.
Monoclinic and triclinic 3D flanking structures around elliptical cracks
We use the Eshelby solution modified for a viscous fluid to model the evolution of three-dimensional flanking structures in monoclinic shear zones. Shearing of an elliptical crack strongly elongated perpendicular to the flow direction produces a cylindrical flanking structure which is reproducible with 2D plane strain models. In contrast, a circular or even narrow, slit-shaped crack exhibits a reduced magnitude of the velocity jump across the crack and results in smaller offset and a narrower zone of deflection than predicted with 2D-models. Even more significant deviations are observed if the crack axes are oriented at an oblique angle to the principal flow directions, where the velocity jump is oblique to the resolved shear direction and is modified during progressive deformation. The resulting triclinic geometry represents a rare example of triclinic structures developing in monoclinic flow and may be used to estimate the flow kinematics of the shear zone.
