Improved soluble expression of the gene encoding amylolytic enzyme Amo45 by fusion with the mobile-loop-region of co-chaperonin GroES in
The gene encoding the amylolytic enzyme Amo45, originating from a metagenomic project, was retrieved by a consensus primer-based approach for glycoside hydrolase (GH) family 57 enzymes. Family 57 contains mainly uncharacterized proteins similar to archaeal thermoactive amylopullulanases. For characterization of these family members soluble, active enzymes have to be produced in sufficient amounts. Heterologous expression of in resulted in low yields of protein, most of which was found in inclusion bodies. To improve protein production and to increase the amount of soluble protein, two different modifications of the gene were applied. The first was fusion to an N-terminal His-tag sequence which increased the yield of protein, but still resulted in high amounts of inclusion bodies. Co-expression with chaperones enhanced the amount of soluble protein 4-fold. An alternative modification was the attachment of a peptide consisting of the amino acid sequence of the mobile-loop of the co-chaperonin GroES of . This sequence improved the soluble protein production 5-fold compared to His-Amo45 and additional expression of chaperones was unnecessary.
Use of bacteria for rapid, pH-neutral, hydrolysis of the model hydrophobic carboxylic acid ester p-nitrophenyl picolinate
Caulobacter crescentus, Escherichia coli and Bacillus subtilis cultures promote the hydrolysis of the model ester p-nitrophenyl picolinate (PNPP) at neutral pH with high efficiency. Hydrolysis is related to cell concentration, while the interaction of PNPP with both bacterial cells and their extracellular molecules is required for a maximum rate of PNPP hydrolysis in C. crescentus cultures. Furthermore, C. crescentus cultures hydrolyze PNPP at concentrations useful in synthetic chemistry.
Mannosylphosphodolichol synthase overexpression supports angiogenesis
Mannosylphospho dolichol synthase (DPMS) plays a critical role in Glc(3)Man(9)GlcNAc(2)-PP-Dol (lipid-linked oligosaccharide, LLO) biosynthesis, an essential intermediate in asparagine-linked (N-linked) protein glycosylation. We have observed earlier that phosphorylation of DPMS increases the catalytic activity of the enzyme by increasing the V(max) as well as the enzyme turnover (k(cat)) without significantly changing the K(m) for GDP-mannose. As a result, LLO biosynthesis, turnover and protein N-glycosylation are increased. This is manifested in increased proliferation of capillary endothelial cells, i.e., angiogenesis. We have then asked if the phosphorylation event or the up-regulation of the DPMS due to over production of the enzyme is a key factor in up-regulating angiogenesis? This question has been answered by isolating a stable capillary endothelial cell clone overexpressing the DPMS gene. Our results indicate that the DPMS overexpressing clone has a high level DPMS mRNA judged by QRT-PCR. The clone also expresses nearly four-times higher DPMS protein over the clone transfected with pEGFP-N1 vector only (i.e., control) as analyzed by western blotting. Most importantly, the overexpressing DPMS clone has ~108% higher DPMS activity than that of the vector control. Immunofluorescence microscopy with Texas-Red conjugated WGA indicates a high level expression of GlcNAc-beta-(1,4)-GlcNAc)1-4-beta-GlcNAc-NeuAc glycans on the external surface of the capillary endothelial cells overexpressing DPMS. Increased cellular proliferation and accelerated healing of the wound induced by a mechanical stress of the DPMS overexpressing clone unequivocally supports DPMS for angiogenesis.
Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil
The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium , Trichoderma , Aspergillus , Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis , Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt.
