Special issue on 14th International Conference on Geometric Modeling and Processing (GMP2020)
Low degree splines for locally quad-dominant meshes
A mesh is locally quad-dominant (lqd) if all non-4-sided facets are surrounded by quadrilaterals. Lqd meshes allow for irregular nodes where ≠ 4 quads meet and for multi-sided facets, called T-gons, that end quad-strips and so adjust mesh density. This paper introduces a new class of bi-cubic (bi-3) Geometric T-joint (GT) splines whose control nets are -nets, i.e. T-gons surrounded by quads. These GT-splines join smoothly with each other, bi-3 G-splines and regular bi-quadratic splines to form smooth surfaces of degree at most bi-3.
Smooth polar caps for locally quad-dominant meshes
A polar configuration is a node surrounded by triangles. Polar configurations are common to cap off cylinders and spheres. When the triangles, interpreted as quadrilaterals with one edge collapsed, are surrounded by a quad-strip then the extended polar configuration qualifies as part of a (lqd) mesh. Recent constructions, referred to as semi-structured splines, can use lqd meshes as control nets: multi-sided configurations that merge parameter directions are covered by G-spline; and T-junctions that transition from coarse and fine are covered by GT-splines. This paper complements existing semi-structured splines by providing the missing component for polar configurations. A spectrum of constructions of differing degree are introduced, tested and compared. Bi-2 splines are extended to polar configurations covered by surfaces consisting of (macro-)patches of degree as low as bi-2. Bi-3 splines are extended to polar configurations covered by surfaces that are except for a pole and consist of (macro-)patches of degree as low as bi-3.
From theoretical to applied geometry - recent developments
Refinable tri-variate splines for box-complexes including irregular points and irregular edges
splines over box-complexes generalize degree 3 (cubic) tensor-product splines. A box-complex is a collection of 3-dimensional boxes forming an unstructured hexahedral mesh that can include irregular points and irregular edges where the layout deviates from the tensor-product grid layout. For example, an edge shared and enclosed by five boxes is irregular. Where the mesh is locally regular, the restriction of the space to each box is a polynomial piece of the tri-cubic tensor-product spline, by default initialized as a tri-cubic. Boxes containing irregularities have their polynomials binarily split into 2 pieces to isolate the irregularity. The pieces join with matching derivatives. The derivatives are zero at irregularities, but these singularities are removable by a local change of variables. The space consists of 2 linearly independent functions per box and is refinable.
Localized G-splines for quad & T-gon meshes
Enriching tensor-product B-spline control nets by allowing T-gons (where strips of quadrilaterals start or end) and irregular nodes (where ≠ 4 quadrilaterals meet) reduces the requirements on quad-meshing and increases the flexibility for polyhedral design with associated smooth surfaces. This paper introduces a family of piecewise polynomial, geometrically continuous surface constructions that yield good highlight line distributions also in the presence of . Such tight juxtaposition can further reduce the quad-meshing requirements and increase the space of polyhedral design control structures. The surfaces can be chosen to cover T-gons with caps of degree bi-4 - or with caps of degree bi-3 that are almost and preserve the good highlight line distribution of the bi-4 surfaces.
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex -sided polygon, the quadratic serendipity elements have 2 basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual ( + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
Auxetic deformations and elliptic curves
In materials science and engineering, auxetic behavior refers to deformations of flexible structures where stretching in some direction involves lateral widening, rather than lateral shrinking. We address the problem of detecting auxetic behavior for flexible periodic bar-and-joint frameworks. Currently, the only known algorithmic solution is based on the rather heavy machinery of fixed-dimension semi-definite programming. In this paper we present a new, simpler algorithmic approach which is applicable to a natural family of three-dimensional periodic bar-and-joint frameworks with three degrees of freedom. This class includes most zeolite structures, which are important for applications in computational materials science. We show that the existence of auxetic deformations is related to properties of an associated elliptic curve. A fast algorithm for recognizing auxetic capabilities is obtained via the classical Aronhold invariants of the cubic form defining the curve. A related alternative is also considered.
Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling
Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations.
Refinable spline elements for irregular quad layout
Building on a result of U. Reif on removable singularities, we construct bi-3 splines that may include irregular points where less or more than four tensor-product patches meet. The resulting space complements PHT splines, is refinable and the refined spaces are nested, preserving for example surfaces constructed from the splines. As in the regular case, each quadrilateral has four degrees of freedom, each associated with one spline and the splines are linearly independent. Examples of use for surface construction and isogeometric analysis are provided.
Matched -constructions always yield -continuous isogeometric elements
(geometrically continuous surface) constructions were developed to create surfaces that are smooth also at irregular points where, in a quad-mesh, three or more than four elements come together. Isogeometric elements were developed to unify the representation of geometry and of engineering analysis. We show how matched constructions for geometry and analysis automatically yield isogeometric elements. This provides a formal framework for the existing and any future isogeometric elements based on geometric continuity.
Smooth surfaces from bilinear patches: Discrete affine minimal surfaces
Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.
Quality Tetrahedral Mesh Smoothing via Boundary-Optimized Delaunay Triangulation
Despite its great success in improving the quality of a tetrahedral mesh, the original optimal Delaunay triangulation (ODT) is designed to move only inner vertices and thus cannot handle input meshes containing "bad" triangles on boundaries. In the current work, we present an integrated approach called boundary-optimized Delaunay triangulation (B-ODT) to smooth (improve) a tetrahedral mesh. In our method, both inner and boundary vertices are repositioned by analytically minimizing the error between a paraboloid function and its piecewise linear interpolation over the neighborhood of each vertex. In addition to the guaranteed volume-preserving property, the proposed algorithm can be readily adapted to preserve sharp features in the original mesh. A number of experiments are included to demonstrate the performance of our method.
Adaptive Skin Meshes Coarsening for Biomolecular Simulation
In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry.
Regularization of B-Spline Objects
By a d-dimensional B-spline object (denoted as ), we mean a B-spline curve (d = 1), a B-spline surface (d = 2) or a B-spline volume (d = 3). By regularization of a B-spline object we mean the process of relocating the control points of such that they approximate an isometric map of its definition domain in certain directions and is shape preserving. In this paper we develop an efficient regularization method for , d = 1, 2, 3 based on solving weak form L(2)-gradient flows constructed from the minimization of certain regularizing energy functionals. These flows are integrated via the finite element method using B-spline basis functions. Our experimental results demonstrate that our new regularization method is very effective.
Quality Meshing of Implicit Solvation Models of Biomolecular Structures
This paper describes a comprehensive approach to construct quality meshes for implicit solvation models of biomolecular structures starting from atomic resolution data in the Protein Data Bank (PDB). First, a smooth volumetric electron density map is constructed from atomic data using weighted Gaussian isotropic kernel functions and a two-level clustering technique. This enables the selection of a smooth implicit solvation surface approximation to the Lee-Richards molecular surface. Next, a modified dual contouring method is used to extract triangular meshes for the surface, and tetrahedral meshes for the volume inside or outside the molecule within a bounding sphere/box of influence. Finally, geometric flow techniques are used to improve the surface and volume mesh quality. Several examples are presented, including generated meshes for biomolecules that have been successfully used in finite element simulations involving solvation energetics and binding rate constants.
Discrete Surface Modelling Using Partial Differential Equations
We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.
Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces
Computational fluid dynamics (CFD) simulations of flow over complex objects have been performed traditionally using fluid-domain meshes that conform to the shape of the object. However, creating shape conforming meshes for complicated geometries like automobiles require extensive geometry preprocessing. This process is usually tedious and requires modifying the geometry, including specialized operations such as defeaturing and filling of small gaps. Hsu et al. (2016) developed a novel immersogeometric fluid-flow method that does not require the generation of a boundary-fitted mesh for the fluid domain. However, their method used the NURBS parameterization of the surfaces for generating the surface quadrature points to enforce the boundary conditions, which required the B-rep model to be converted completely to NURBS before analysis can be performed. This conversion usually leads to poorly parameterized NURBS surfaces and can lead to poorly trimmed or missing surface features. In addition, converting simple geometries such as cylinders to NURBS imposes a performance penalty since these geometries have to be dealt with as rational splines. As a result, the geometry has to be inspected again after conversion to ensure analysis compatibility and can increase the computational cost. In this work, we have extended the immersogeometric method to generate surface quadrature points directly using analytic surfaces. We have developed quadrature rules for all four kinds of analytic surfaces: planes, cones, spheres, and toroids. We have also developed methods for performing adaptive quadrature on trimmed analytic surfaces. Since analytic surfaces have frequently been used for constructing solid models, this method is also faster to generate quadrature points on real-world geometries than using only NURBS surfaces. To assess the accuracy of the proposed method, we perform simulations of a benchmark problem of flow over a torpedo shape made of analytic surfaces and compare those to immersogeometric simulations of the same model with NURBS surfaces. We also compare the results of our immersogeometric method with those obtained using boundary-fitted CFD of a tessellated torpedo shape, and quantities of interest such as drag coefficient are in good agreement. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of a truck that has a large percentage of analytic surfaces. Using analytic surfaces over NURBS avoids unnecessary surface type conversion and significantly reduces model-preprocessing time, while providing the same accuracy for the aerodynamic quantities of interest.
