ADHD classification with cross-dataset feature selection for biomarker consistency detection
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In practice, these data-driven approaches lead to varying learned features for ADHD classification across diverse ADHD datasets. This phenomenon significantly undermines the reliability of identified biomarkers and hampers the interpretability of these methods.In this study, we propose a cross-dataset feature selection (FS) module using a grouped SVM-based recursive feature elimination approach (G-SVM-RFE) to enhance biomarker consistency across multiple datasets. Additionally, we employ connectome gradient data for ADHD classification. In details, we introduce the G-SVM-RFE method to effectively concentrate gradient components within a few brain regions, thereby increasing the likelihood of identifying these regions as ADHD biomarkers. The cross-dataset FS module is integrated into an existing binary hypothesis testing (BHT) framework. This module utilizes external datasets to identify global regions that yield stable biomarkers. Meanwhile, given a dataset which waits for implementing the classification task as local dataset, we learn its own specific regions to further improve the performance of accuracy on this dataset.By employing this module, our experiments achieve an average accuracy of 96.7% on diverse datasets. Importantly, the discriminative gradient components primarily originate from the global regions, providing evidence for the significance of these regions. We further identify regions with the high appearance frequencies as biomarkers, where all the used global regions and one local region are recognized.These biomarkers align with existing research on impaired brain regions in children with ADHD. Thus, our method demonstrates its validity by providing enhanced biological explanations derived from ADHD mechanisms.
Subtype classification of attention deficit hyperactivity disorder with hierarchical binary hypothesis testing framework
. The diagnosis of attention deficit hyperactivity disorder (ADHD) subtypes is important for the refined treatment of ADHD children. Although automated diagnosis methods based on machine learning are performed with structural and functional magnetic resonance imaging (sMRI and fMRI) data which have full observation of brains, they are not satisfactory with the accuracy of less than80%for the ADHD subtype diagnosis.. To improve the accuracy and obtain the biomarker of ADHD subtypes, we proposed a hierarchical binary hypothesis testing (H-BHT) framework by using brain functional connectivity (FC) as input bio-signals. The framework includes a two-stage procedure with a decision tree strategy and thus becomes suitable for the subtype classification. Also, typical FC is extracted in both two stages of identifying ADHD subtypes. That means the important FC is found out for the subtype recognition.. We apply the proposed H-BHT framework to resting state fMRI datasets from ADHD-200 consortium. The results are achieved with the average accuracy97.1%and an average kappa score 0.947. Discriminative FC between ADHD subtypes is found by comparing the P-values of typical FC.. The proposed framework not only is an effective structure for ADHD subtype classification, but also provides useful reference for multiclass classification of mental disease subtypes.
